【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線(xiàn)與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽(yáng).( 取1.73)
(1)求樓房的高度約為多少米?
(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)小貓能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.
【答案】
(1)解:當(dāng)α=60°時(shí),在Rt△ABE中,
∵tan60°= = ,
∴AB=10tan60°=10 ≈10×1.73=17.3米.
即樓房的高度約為17.3米;
(2)解:當(dāng)α=45°時(shí),小貓仍可以曬到太陽(yáng).理由如下:
假設(shè)沒(méi)有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線(xiàn)與地面AD的交點(diǎn)為點(diǎn)F,與MC的交點(diǎn)為點(diǎn)H.
∵∠BFA=45°,
∴tan45°= =1,
此時(shí)的影長(zhǎng)AF=AB=17.3米,
∴CF=AF﹣AC=17.3﹣17.2=0.1米,
∴CH=CF=0.1米,
∴大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上,
∴小貓仍可以曬到太陽(yáng).
【解析】(1)在Rt△ABE中,由tan60°= = ,即可求出AB=10tan60°=17.3米;(2)假設(shè)沒(méi)有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線(xiàn)與地面AD的交點(diǎn)為點(diǎn)F,與MC的交點(diǎn)為點(diǎn)H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上,故小貓仍可以曬到太陽(yáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,AB=5,AC=8,點(diǎn)P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作EF垂直于AC交AD于點(diǎn)E,交AB于點(diǎn)F,將△AEF折疊,使點(diǎn)A落在點(diǎn)A′處,當(dāng)△A′CD時(shí)等腰三角形時(shí),AP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一條直線(xiàn)與反比例函數(shù)y= (x>0)的圖象交于兩點(diǎn)A、B,與x軸交于點(diǎn)C,且點(diǎn)B是AC的中點(diǎn),分別過(guò)兩點(diǎn)A、B作x軸的平行線(xiàn),與反比例函數(shù)y= (x>0)的圖象交于兩點(diǎn)D、E,連接DE,則四邊形ABED的面積為( )
A.4
B.
C.5
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說(shuō)法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD的對(duì)角線(xiàn)交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過(guò)點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長(zhǎng)線(xiàn)與半圓相切于點(diǎn)F,已知直徑AB=8. ①連結(jié)OE,求△OBE的面積.
②求扇形AOE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算(2a+1)2﹣(2a+1)(﹣1+2a);
(2)用乘法公式計(jì)算:20022﹣2001×2003;
(3)解不等式組:,并把解集在數(shù)軸上表示出來(lái);
(4)解方程組: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作實(shí)踐:△ABC中,∠A=90°,∠B=22.5°,請(qǐng)畫(huà)出一條直線(xiàn)把△ABC分割成兩個(gè)等腰三角形,并標(biāo)出分割成兩個(gè)等腰三角形底角的度數(shù);(要求用兩種不同的分割方法)
(2)分類(lèi)探究:△ABC中,最小內(nèi)角∠B=24°,若△ABC被一直線(xiàn)分割成兩個(gè)等腰三角形,請(qǐng)畫(huà)出相應(yīng)示意圖并寫(xiě)出△ABC最大內(nèi)角的所有可能值;
(3)猜想發(fā)現(xiàn):若一個(gè)三角形能被一直線(xiàn)分割成兩個(gè)等腰三角形,需滿(mǎn)足什么條件?(請(qǐng)你至少寫(xiě)出兩個(gè)條件,無(wú)需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了支援災(zāi)區(qū)學(xué)校災(zāi)后重建,我校決定再次向?yàn)?zāi)區(qū)捐助床架60個(gè),課桌凳100套.現(xiàn)計(jì)劃租甲、乙兩種貨車(chē)共8輛,將這些物質(zhì)運(yùn)往災(zāi)區(qū),已知一輛甲貨車(chē)可裝床架5個(gè)和課桌凳20套, 一輛乙貨車(chē)可裝床
架10個(gè)和課桌凳10套.
(1)學(xué)校安排甲、乙兩種貨車(chē)可一次性把這些物資運(yùn)到災(zāi)區(qū)有哪幾種方案?
(2)若甲種貨車(chē)每輛要付運(yùn)輸費(fèi)1200元,乙種貨車(chē)要付運(yùn)輸費(fèi)1000元,則學(xué)校應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)
最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com