【題目】△ABC中,AB=AC=5,BC=6,點(diǎn)D是BC上的一點(diǎn),那么點(diǎn)D到AB與AC的距離的和為( 。
A.5
B.6
C.4
D.

【答案】D
【解析】作△ABC的高CQ,AH,過C作CZ⊥DE交ED的延長線于Z,

∵AB=AC=5,BC=6,AH⊥BC,
∴BH=CH=3,
根據(jù)勾股定理得:AH=4,
根據(jù)三角形的面積公式得:BCAH=ABCQ,
即:6×4=5CQ,
解得:CQ= ,
∵CQ⊥AB,DE⊥AB,CZ⊥DE,
∴∠CQE=∠QEZ=∠Z=90°,
∴四邊形QEZC是矩形,
∴CQ=ZE,
∵∠QEZ=∠Z=90°,
∴∠QEZ+∠Z=180°,
∴CZ∥AB,
∴∠B=∠ZCB,
∵DF⊥AC,CZ⊥DE,
∴∠Z=∠DFC=90°,
∵AB=AC,
∴∠B=∠ACB,
∴∠ACB=∠ZCB,
∵CD=CD,∠ACB=∠ZCB,
∴△ZCD≌△FCD,
∴DF=DZ,
∴DE+DF=CQ=
故選D.
【考點(diǎn)精析】本題主要考查了平行線的判定與性質(zhì)和矩形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì);矩形的四個(gè)角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是(
A.m<
B.m> 且m≠2
C.m≤
D.m≥ 且m≠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)床同時(shí)生產(chǎn)一種零件,在10天中,兩臺機(jī)床每天出次品的數(shù)量如下表:

1

1

0

2

1

3

2

1

1

0

0

2

2

0

3

1

0

1

3

1

(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)和方差;

(2)從計(jì)算的結(jié)果來看,在10天中,哪臺機(jī)床出次品的平均數(shù)較。磕呐_機(jī)床出次品的波動(dòng)較?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中, ,點(diǎn)E是邊BC上的動(dòng)點(diǎn)不與點(diǎn)重合,以AE為邊作,使得,射線AF交邊CD于點(diǎn)F

如圖1,當(dāng)點(diǎn)E是邊CB的中點(diǎn)時(shí),判斷并證明線段之間的數(shù)量關(guān)系;

如圖2,當(dāng)點(diǎn)E不是邊BC的中點(diǎn)時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時(shí)間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價(jià)m(元/件)

當(dāng)1≤x≤20時(shí),m=20+ x

當(dāng)21≤x≤30時(shí),m=10+


(1)請計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠A=90°,AB=ACBC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠BAC=75°,ACB=35°,ABC的平分線BD交邊AC于點(diǎn)D

1)求證:△BCD為等腰三角形;

2)若∠BAC的平分線AE交邊BC于點(diǎn)E,如圖2,求證:BD+AD=AB+BE;

3)若∠BAC外角的平分線AECB延長線于點(diǎn)E,請你探究(2)中的結(jié)論是否仍然成立?直接寫出正確的結(jié)論

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, , , ,

求證:

證明:在中,

).

____________________ ).

的角平分線.

,

).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2-2x+1與x軸沒有交點(diǎn),那么該拋物線的頂點(diǎn)所在的象限是( 。
A.第四象限
B.第三象限
C.第二象限
D.第一象限

查看答案和解析>>

同步練習(xí)冊答案