等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AC=BC,BF⊥AC于F,線段BF與圖中的哪一條線段相等.先寫出你的猜想,再加以證明.猜想:BF=________.

答案:
解析:

 

猜想:BF=DE

  證明:∵AB=CD,∴∠ABC=∠DCB.

  ∵AC=BC,∴∠BAC=∠ABC.

  ∴∠BAC=∠DCE.∵BF⊥AC,DE⊥BC,∴∠BFA=∠DEC=90°

  ∴△ABF≌△CDE∴BF=DE.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,則梯形ABCD的面積是
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分別為對角線AC、DB的中點,且EF=4.求這個梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)如圖,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的長.
(2)如圖是一個外輪廓為矩形的機(jī)器零件平面示意圖,根據(jù)圖中的尺寸(單位:mm),計算兩圓孔中心A和B的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等腰梯形ABCD中,AD=2,BC=4,高DF=2,則腰CD長是
5
5

查看答案和解析>>

同步練習(xí)冊答案