如圖,二次函數y=x2+bx+c經過點(-1,0)和點(0,-3).
(1)求二次函數的表達式;
(2)如果一次函數y=4x+m的圖象與二次函數的圖象有且只有一個公共點,求m的值和該公共點的坐標;
(3)將二次函數圖象y軸左側部分沿y軸翻折,翻折后得到的圖象與原圖象剩余部分組成一個新的圖象,該圖象記為G,如果直線y=4x+n與圖象G有3個公共點,求n的值.
(1)y=x2-2x-3;(2)-12,(3,0);(3)-3或-4.
解析試題分析:(1)把(-1,0)和點(0,-3)代入函數表達式,利用待定系數法求二次函數解析式解答即可;
(2)聯立兩函數解析式消掉未知數y,得到關于x的一元二次方程,再根據方程有兩個相等的實數根,△=0列式求解得到m的值,再求出x的值,然后求出y的值,從而得到公共點的坐標;
(3)根據軸對稱性寫出翻折部分的二次函數解析式,再根據直線與圖象有3個公共點,①聯立直線與翻折后的拋物線的解析式,消掉y得到關于x的一元二次方程,有兩個相等的實數根,②直線經過拋物線與y軸的交點.
試題解析:(1)把(-1,0)和(0,-3)代入到y=x2+bx+c中,得,
解得,
所以y=x2-2x-3;
(2)由題意得:,
消掉y整理得,x2-6x-(3+m)=0,
∴△=(-6)2+4(3+m)=0,
解得m=-12,
此時,x1=x2=,
y=4×3-12=0,
∴m=-12,公共點為(3,0);
(3)原拋物線解析式為:y=x2-2x-3,
原拋物線沿y軸翻折后得到的新拋物線:y=x2+2x-3(x≥0),
由,
得x2-2x-3-n=0,
△=(-2)2+4(3+n)=0,
解得n=-4,
當直線y=4x+n經過點(0,-3)時,直線與圖象G有3個公共點,
把(0,-3)代入到y=4x+n中,得n=-3,
綜上所述,n=-3或-4.
考點:二次函數綜合題.
科目:初中數學 來源: 題型:填空題
如圖,是二次函數y=ax2+bx+c(a≠0)的圖象的一部分,
給出下列命題:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的兩根分別為﹣3和1;
⑤8a+c>0.其中正確的命題是 .
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
我市高新技術開發(fā)區(qū)的某公司,用480萬元購得某種產品的生產技術后,并進一步投入資金1520萬元購買生產設備,進行該產品的生產加工,已知生產這種產品每件還需成本費40元.經過市場調研發(fā)現:該產品的銷售單價,需定在100元到300元之間較為合理.當銷售單價定為100元時,年銷售量為20萬件;當銷售單價超過100元,但不超過200元時,每件新產品的銷售價格每增加10元,年銷售量將減少0.8萬件;當銷售單價超過200元,但不超過300元時,每件產品的銷售價格每增加10元,年銷售量將減少1萬件.設銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產成本-投資成本)
(1)直接寫出y與x之間的函數關系式;
(2)求第一年的年獲利w與x間的函數關系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產品銷售量最大,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線與x軸交于A,B兩點,對稱軸為直線,直線AD交拋物線于點D(2,3).
(1)求拋物線的解析式;
(2)已知點M為第三象限內拋物線上的一動點,當點M在什么位置時四邊形AMCO的面積最大?并求出最大值;
(3)當四邊形AMCO面積最大時,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線BC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線y=x2+bx+c的頂點坐標為M(0,﹣1),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)判斷△MAB的形狀,并說明理由;
(3)過原點的任意直線(不與y軸重合)交拋物線于C、D兩點,連接MC,MD,試判斷MC、MD是否垂直,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某經銷商銷售一種產品,這種產品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18元/千克,市場調查發(fā)現,該產品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數關系如圖所示:
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線y=ax2+bx+c經過A(﹣1,0)、B(2,0)、C(0,2)三點.
(1)求這條拋物線的解析式;
(2)如圖一,點P是第一象限內此拋物線上的一個動點,當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時點P的坐標;
(3)如圖二,設線段AC的垂直平分線交x軸于點E,垂足為D,M為拋物線的頂點,那么在直線DE上是否存在一點G,使△CMG的周長最?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知二次函數(a≠0)的圖象經過點A,點B.
(1)求二次函數的表達式;
(2)若反比例函數(x>0)的圖象與二次函數(a≠0)的圖象在第一象限內交于點,落在兩個相鄰的正整數之間,請你直接寫出這兩個相鄰的正整數;
(3)若反比例函數(x>0,k>0)的圖象與二次函數(a≠0)的圖象在第一象限內交于點,且,試求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com