【題目】問(wèn)題提出(1)如圖①,在ABC中,BC6DBC上一點(diǎn),AD4,則ABC面積的最大值是   

問(wèn)題探究(2)如圖②,已知矩形ABCD的周長(zhǎng)為12,求矩形ABCD面積的最大值.

問(wèn)題解決(3)如圖③,ABC是葛叔叔家的菜地示意圖,其中AB30米,BC40米,AC50米,現(xiàn)在他想利用周邊地的情況,把原來(lái)的三角形地拓展成符合條件的面積盡可能大、周長(zhǎng)盡可能長(zhǎng)的四邊形地,用來(lái)建魚(yú)塘.已知葛叔叔欲建的魚(yú)塘是四邊形ABCD,且滿足∠ADC60°.你認(rèn)為葛叔叔的想法能否實(shí)現(xiàn)?若能,求出這個(gè)四邊形魚(yú)塘周長(zhǎng)的最大值;若不能,請(qǐng)說(shuō)明理由.

【答案】112;(29;(3)能實(shí)現(xiàn);170(米).

【解析】

1)當(dāng)ADBC時(shí),△ABC的面積最大.

2)由題意矩形鄰邊之和為6,設(shè)矩形的一邊為m,另一邊為6m,可得Sm6m)=﹣(m32+9,利用二次函數(shù)的性質(zhì)解決問(wèn)題即可.

3)由題意,AC100,∠ADC60°,即點(diǎn)D在優(yōu)弧ADC上運(yùn)動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)到優(yōu)弧ADC的中點(diǎn)時(shí),四邊形魚(yú)塘面積和周長(zhǎng)達(dá)到最大值,此時(shí)△ACD為等邊三角形,計(jì)算出△ADC的面積和AD的長(zhǎng)即可得出這個(gè)四邊形魚(yú)塘面積和周長(zhǎng)的最大值.

1)如圖①中,

BC6AD4,

∴當(dāng)ADBC時(shí),△ABC的面積最大,最大值=×6×412

故答案為12

2)∵矩形的周長(zhǎng)為12

∴鄰邊之和為6,設(shè)矩形的一邊為m,另一邊為6m,

Sm6m)=﹣(m32+9,

∵﹣10,

m3時(shí),S有最大值,最大值為9

3)如圖③中,

AC50米,AB40米,BC30米,

AC2AB2+BC2

∴∠ABC90°

作△AOC,使得∠AOC120°OAOC,以O為圓心,OA長(zhǎng)為半徑畫(huà)⊙O,

∵∠ADC60°

∴點(diǎn)D在優(yōu)弧ADC上運(yùn)動(dòng),

當(dāng)點(diǎn)D是優(yōu)弧ADC的中點(diǎn)時(shí),四邊形ABCD面積取得最大值,

設(shè)D是優(yōu)弧ADC上任意一點(diǎn),連接AD,CD,延長(zhǎng)CDF,使得DFDA,連接AF,則∠AFC30°ADC,

∴點(diǎn)FD為圓心DA為半徑的圓上,

DFDA,

DF+DCCF

DA+DCDA+DC,

DA+DC+ACDA+DC+AC

∴此時(shí)四邊形ADCB的周長(zhǎng)最大,最大值=40+30+50+50170(米).

答:這個(gè)四邊形魚(yú)塘周長(zhǎng)的最大值為170(米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019415日傍晚法國(guó)地標(biāo)性建筑巴黎圣母院突遭大火吞噬,導(dǎo)致屋頂和主尖塔坍塌,哥特式的玫瑰花窗損毀.為了重建巴黎圣母院,設(shè)計(jì)小組設(shè)計(jì)了一個(gè)由三色玻璃拼成的花窗,如圖所示,主體部分由矩形和半圓組成,設(shè)半圓為區(qū)域,四個(gè)全等的直角三角形為區(qū)域,矩形內(nèi)的陰影部分為區(qū)域,其中,設(shè)

當(dāng),求區(qū)域的面積.

請(qǐng)用的代數(shù)式表示出區(qū)域的面積并求出其最大值.

為了美觀,設(shè)置區(qū)域與區(qū)域的面積之比為.區(qū)域、區(qū)域、區(qū)域分別鑲嵌紅、藍(lán)、黃色三種玻璃,已知這三種玻璃的單價(jià)之和為(三種玻璃的單價(jià)均為整數(shù)),整個(gè)花窗鑲嵌玻璃共花費(fèi)了元,求這三種玻璃的單價(jià).()

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)的圖象交于Am,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫(xiě)出x的取值范圍;

3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了創(chuàng)建綠色生態(tài)城市,在城東建了東州湖景區(qū),小明和小亮想測(cè)量東州湖東西兩端AB間的距離.于是,他們?nèi)チ撕叄鐖D,在湖的南岸的水平地面上,選取了可直接到達(dá)點(diǎn)B的一點(diǎn)C,并測(cè)得BC350米,點(diǎn)A位于點(diǎn)C的北偏西73°方向,點(diǎn)B位于點(diǎn)C的北偏東45°方向.請(qǐng)你根據(jù)以上提供的信息,計(jì)算東州湖東西兩端之間AB的長(zhǎng).(結(jié)果精確到1米)(參考數(shù)據(jù):sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】淮南牛肉湯是安徽知名地方小吃.某分店經(jīng)理發(fā)現(xiàn),當(dāng)每碗牛肉湯的售價(jià)為6元時(shí),每天能賣出500碗;當(dāng)每碗牛肉湯的售價(jià)每增加0.5元時(shí),每天就會(huì)少賣出20碗,設(shè)每碗牛肉湯的售價(jià)增加元時(shí),一天的營(yíng)業(yè)額為元.

1)求的函數(shù)關(guān)系式(不要求寫(xiě)出的取值范圍);

2)考慮到顧客可接受價(jià)格/碗的范圍是,且為整數(shù),不考慮其他因素,則該分店的牛肉湯每碗多少元時(shí),每天的牛肉湯營(yíng)業(yè)額最大?最大營(yíng)業(yè)額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,弦與弦相交于點(diǎn)于點(diǎn),過(guò)點(diǎn)的直線與的延長(zhǎng)線交于點(diǎn)

1)若,求證:的切線;

2)若,,請(qǐng)用表示的半徑;

3)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC為等邊三角形,點(diǎn)D是線段AB上一點(diǎn)(不與A、B重合).將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到線段CE.連結(jié)DEBE

1)依題意補(bǔ)全圖1并判斷ADBE的數(shù)量關(guān)系.

2)過(guò)點(diǎn)AAFEBEB延長(zhǎng)線于點(diǎn)F.用等式表示線段EB、DBAF之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案