【題目】如圖,AB是⊙O的弦,BC切⊙O于點(diǎn)B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,求扇形OAB的面積.(計(jì)算結(jié)果保留π)

【答案】
(1)證明:連接OB,如圖所示:

∵BC切⊙O于點(diǎn)B,

∴OB⊥BC,

∵AD⊥BC,

∴AD∥OB,

∴∠DAB=∠OBA,

∵OA=OB,

∴∠OAB=∠OBA,

∴∠DAB=∠OAB,

∴AB平分∠OAD;


(2)解:∵點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,

∴∠AOB=2∠AEB=120°,

∴扇形OAB的面積= =3π.


【解析】(1)連接OB,由切線的性質(zhì)得出OB⊥BC,證出AD∥OB,由平行線的性質(zhì)和等腰三角形的性質(zhì)證出∠DAB=∠OAB,即可得出結(jié)論;(2)由圓周角定理得出∠AOB=120°,由扇形面積公式即可得出答案.
【考點(diǎn)精析】利用切線的性質(zhì)定理和扇形面積計(jì)算公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A,交AB于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF,BF,DF.

(1)求證:△ABC≌△ABF;
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)上述信息,解答下列問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫樹(shù)狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn)E在第一象限,且DE⊥DC,DE=DC.以直線AB為對(duì)稱軸的拋物線過(guò)C,E兩點(diǎn).

(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)C出發(fā),沿射線CB每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F,當(dāng)t為何值時(shí),以點(diǎn)P,F(xiàn),D為頂點(diǎn)的三角形與△COD相似?
(3)點(diǎn)M為直線AB上一動(dòng)點(diǎn),點(diǎn)N為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)M,N,使得以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在△ABC中,點(diǎn)O是AC上一點(diǎn),過(guò)點(diǎn)O的直線與AB,BC的延長(zhǎng)線分別相交于點(diǎn)M,N.

(1)【問(wèn)題引入】
若點(diǎn)O是AC的中點(diǎn), = ,求 的值;
溫馨提示:過(guò)點(diǎn)A作MN的平行線交BN的延長(zhǎng)線于點(diǎn)G.
(2)若點(diǎn)O是AC上任意一點(diǎn)(不與A,C重合),求證: =1;
(3)【拓展應(yīng)用】
如圖2所示,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),射線AP,BP,CP分別交BC,AC,AB于點(diǎn)D,E,F(xiàn),若 = , = ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1, ),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )

A.(0,﹣2)
B.(1,﹣
C.(2,0)
D.( ,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD(AB<AD).

(1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長(zhǎng)為半徑畫弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=x+b與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,3).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)請(qǐng)根據(jù)圖象直接寫出不等式x+b> 的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案