【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC繞著點C旋轉(zhuǎn),使點B與AB邊上的點D重合,點A落在點E處,則線段AE的長為(
A.6
B.7
C.8
D.9

【答案】C
【解析】解:∵在△ABC中,∠ACB=90°,AB=9,cosB= , ∴BC=ABcosB=18× =12,AC= =6
∵把△ABC繞著點C旋轉(zhuǎn),使點B與AB邊上的點D重合,點A落在點E,
∴△ABC≌△EDC,BC=DC=12,AC=EC=6 ,∠BCD=∠ACE,
∴∠B=∠CAE.
作CM⊥BD于M,作CN⊥AE于N,則∠BCM= ∠BCD,∠ACN= ∠ACE,
∴∠BCM=∠ACN.
∵在△ANC中,∠ANC=90°,AC=6 ,cos∠CAN=cosB=
∴AN=ACcos∠CAN=6 × =4 ,
∴AE=2AN=8
故選C.

【考點精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法),以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進行如下操作:以點B為圓心,適當長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點O,畫射線BO,交AD于點E.

(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,BC切⊙O于點B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點E是優(yōu)弧 上一點,且∠AEB=60°,求扇形OAB的面積.(計算結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC=90°,AB=BC,點E、F在AC上,∠EBF=45°,若AE=1,CF=2,則AB的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某調(diào)查公司對本區(qū)域的共享單車數(shù)量及使用次數(shù)進行了調(diào)查發(fā)現(xiàn),今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛,調(diào)查還發(fā)現(xiàn)某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數(shù)是這一周所有單車平均使用次數(shù)的2.5倍,第2、第3周該單車的每輛平均使用次數(shù)都比前一周增長一個相同的百分數(shù)m,第3周所有單車的每輛平均使用次數(shù)比第1周增加的百分數(shù)也是m,而且第3周該款單車(共100輛)的總使用次數(shù)占到所有單車總使用次數(shù)的四分之一.(注:總使用次數(shù)=每輛平均使用次數(shù)×車輛數(shù))
(1)求第3周該區(qū)域內(nèi)各類共享單車的數(shù)量;
(2)求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點G.
(1)試說明DF=CE;
(2)若AC=BF=DF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點P在線段AC上以5cm/s的速度從點A運動到點C,過點P作PD⊥AB于點D,將△APD繞PD的中點旋轉(zhuǎn)180°得到△A′DP,設(shè)點P的運動時間為x(s).

(1)當點A′落在邊BC上時,求x的值;
(2)在動點P從點A運動到點C過程中,當x為何值時,△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動點Q與點P同時出發(fā),在線段BC上以5cm/s的速度從點B運動到點C,過點Q作QE⊥AB于點E,將△BQE繞QE的中點旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當直線A′B′與△ABC的一邊垂直時,求線段A′B′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、②、③均是4×4的正方形網(wǎng)格,每個小正方形頂點叫做格點,點O和線段AB的端點在格點上,按要求完成下列作圖.

(1)在圖①、②中分別找到格點C、D,使以點A、B、C、D為頂點的四邊形是平行四邊形,且點O到這個四邊形的兩個端點的距離相等,畫出兩個這樣的平行四邊形.
(2)在圖③中找到格點E、F,使以A、B、E、F為頂點的四邊形的面積最大,且點O到這個四邊形的兩個端點的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=8,以C為圓心適當長為半徑畫弧分別交BC,CD于M,N兩點,分別以M,N為圓心,以大于 MN的長為半徑畫弧,兩弧在∠BCD的內(nèi)部交于點P,連接CP并延長交AD于E,交BA的延長線于F,則AE+AF的值等于

查看答案和解析>>

同步練習冊答案