【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:

1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn))

2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;

3)如果圖中的滿足,求:①的值;②的值.

【答案】1,;(2;(3①9,45.

【解析】

1)直接把兩個(gè)正方形的面積相加或利用大正方形的面積減去兩個(gè)長(zhǎng)方形的面積;

2)利用面積相等把(1)中的式子聯(lián)立即可;

3)注意a,b都為正數(shù)且ab,利用(2)的結(jié)論進(jìn)行探究得出答案即可.

1)兩個(gè)陰影圖形的面積和可表示為:a2+b2a+b2-2ab;

2a2+b2=a+b2-2ab

3)∵a,bab)滿足a2+b2=53,ab=14,

∴①(a+b2=a2+b2+2ab=53+2×14=81

a+b=±9,

又∵a0b0,

a+b=9;

②(a-b2=a2+b2-2ab=53-2×14=25

a-b=±5

又∵ab0,

a-b=5

a2-b2=a+b)(a-b=9×5=45

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,ABC在平面直角坐標(biāo)系中的位置如圖所示

(1)、寫出A、B、C三點(diǎn)的坐標(biāo)

(2)、求ABC的面積

(3)、ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0+4,y0-3),ABC作同樣的平移得到A1B1C1,寫出A1 、B1、C1的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一塊長(zhǎng)、寬、高分別為6cm、4cm、3cm的長(zhǎng)方體木塊,一只螞蟻要從長(zhǎng)方體木塊的一個(gè)頂點(diǎn)A處,沿著長(zhǎng)方體的表面到長(zhǎng)方體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是( )

A. cm B. cm C. cm D. 9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( 。

①xy+2xy7②4x+1xy;+y5;④xy⑤x2y22;⑥6x2y;⑦x+y+z1;⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng),交AD延長(zhǎng)線于點(diǎn)F,連接BD、CF.

(1)求證:△CEB≌△DEF;

(2)若AB=BF,試判斷四邊形BCFD的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的函數(shù)圖象反映的過(guò)程是:李大爺每天早上都到公園鍛煉,他從家去公園鍛煉一會(huì)兒,又去了菜市場(chǎng)后馬上回家,其中表示時(shí)間,表示李大爺離他家的距離。

(1)李大爺家到公園的距離是多少千米,他在公園銀煉了多少小時(shí);

(2)李大爺從菜市場(chǎng)回家的平均速度;

(3)李大爺從家到菜市場(chǎng)的平均速度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個(gè)圖形有6個(gè)小圓,第2個(gè)圖形有10個(gè)小圓,第3個(gè)圖形有16個(gè)小圓,第4個(gè)圖形有24個(gè)小圓,…,依次規(guī)律,第9個(gè)圖形圓的個(gè)數(shù)為(

A.94B.85C.84D.76

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) 的部分對(duì)應(yīng)值如下表:

-1

0

1

3

-3

1

3

1

則下列判斷中正確的是( )
A.拋物線開口向上
B.拋物線與 軸交于負(fù)半軸
C.當(dāng) 時(shí),
D.方程 的正根在3與4之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD中,P為對(duì)角線AC上的任意一點(diǎn),分別連接PB、PD,PE⊥PB,交CD與E.

(1)求證:PE=PD;
(2)當(dāng)E為CD的中點(diǎn)時(shí),求AP的長(zhǎng);
(3)設(shè)AP=x(0<x< ),四邊形BPEC的面積為y,求證:y= ﹣x)2

查看答案和解析>>

同步練習(xí)冊(cè)答案