如圖,是雙曲線數(shù)學(xué)公式,數(shù)學(xué)公式在第一象限內(nèi)的圖象,直線AB∥x軸分別交雙曲線于A、B兩點(diǎn),則△AOB面積為


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
C
分析:根據(jù)反比例函數(shù)的幾何意義,反比例函數(shù)y=上一點(diǎn)P,過(guò)p作y軸的垂線PC,則△OPC的面積是|k|,據(jù)此即可求解.
解答:∵A在反比例函數(shù)線y=上.
∴△OAC的面積是×2=1
同理△OBC的面積是×6=3.
則△AOB面積為S△OBC-S△OAC=3-1=2.
故選C.
點(diǎn)評(píng):本題主要考查了反比例函數(shù)的性質(zhì),正確理解三角形的面積與k的值的大小是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線y=
4x
交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
(1)求B點(diǎn)的坐標(biāo);
(2)若S△AOB=2,求A點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•呼和浩特)如圖,拋物線y=ax2+bx+c(a<0)與雙曲線y=
kx
相交于點(diǎn)A,B,且拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,2),點(diǎn)B在第四象限內(nèi),過(guò)點(diǎn)B作直線BC∥x軸,點(diǎn)C為直線BC與拋物線的另一交點(diǎn),已知直線BC與x軸之間的距離是點(diǎn)B到y(tǒng)軸的距離的4倍,記拋物線頂點(diǎn)為E.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC與△ABE的面積;
(3)在拋物線上是否存在點(diǎn)D,使△ABD的面積等于△ABE的面積的8倍?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知C、D是雙曲線y=
m
x
在第一象限內(nèi)的分支上兩點(diǎn),直線CD分別交x軸、y軸于A、B,CG⊥x軸于G,DH⊥x軸于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D點(diǎn)的坐標(biāo);
(2)在雙曲線第一象限內(nèi)的分支上是否有一點(diǎn)P,使得S△POC=S△POD?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,點(diǎn)K是雙曲線y=
m
x
在第三象限內(nèi)的分支上的一動(dòng)點(diǎn),過(guò)點(diǎn)K作KM⊥y軸于M,OE平分∠KOA,KE⊥OE,KE交y軸于N,直線ME交x軸于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一個(gè)為定值,請(qǐng)你選擇正確結(jié)論并求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知點(diǎn)A是雙曲線y=數(shù)學(xué)公式在第一象限上的一動(dòng)點(diǎn),連接AO,以O(shè)A為一邊作等腰直角三角形AOB(∠AOB=90°),點(diǎn)B在第四象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)B的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,C,D是雙曲線y=數(shù)學(xué)公式在第1象限內(nèi)的分支上的兩點(diǎn),直線CD分別交x軸、y軸于A、B兩點(diǎn),設(shè)C、D坐標(biāo)(x1,y1),(x2,y2),連接OC、OD,求證:y1<OC<y1+數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案