科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2014滬科版八年級上冊(專題訓練 狀元筆記)數(shù)學:第13章 三角形中的邊角關系 滬科版 題型:044
在研究三角形內角和等于180°的證明方法時,小明和小虎分別給出了下列證法.
小明:在△ABC中,延長BC到D,
∴∠ACD=∠A+∠B(三角形一個外角等于和它不相鄰的兩個內角的和).
又∵∠ACD+∠ACB=180°(平角定義),
∴∠A+∠B+∠ACB=180°(等式的性質).
小虎:在△ABC中,作CD⊥AB(如圖),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定義).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形兩銳角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等式的性質).
∴∠A+∠B+∠ACB=180°.
請你判斷上述兩名同學的證法是否正確,如果不正確,寫出一種你認為較簡單的證明三角形內角和定理的方法,與同伴交流.
查看答案和解析>>
科目:初中數(shù)學 來源:學習周報 數(shù)學 滬科八年級版 2009-2010學年 第19~26期 總175~182期 滬科版 題型:059
在研究“三角形的三個內角和等于180°”的證明方法時,小明和小虎分別給出了下列證法:
小明:在△ABC中,延長BC到點D(如圖),
所以∠ACD=∠A+∠B.(三角形的一個外角等于與它不相鄰的兩個內角的和)
又因為∠ACD+∠ACB=180°,(平角定義)
所以∠A+∠B+∠ACB=180°.(等量代換)
小虎:在△ABC中,過點A作AD⊥BC(如圖),
所以∠ADC=∠ADB=90°.(直角定義)
所以∠DAC+∠C=90°,∠B+∠BAD=90°.(直角三角形的兩銳角互余)
所以∠DAC+∠C+∠B+∠BAD=180°,
即∠BAC+∠B+∠C=180°.
請你對上述兩名同學的證法給出評價,并寫出一種你認為較簡單的證明三角形內角和定理的方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平行四邊形ABCD中,AB=5,BC=10,F為AD的中點,CE⊥AB于E,設∠ABC=α(60°≤α<90°).
(1)當α=60°時,求CE的長;
(2)當60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當CE2-CF2取最大值時,求tan∠DCF的值.
分析 (1)利用60°角的正弦值列式計算即可得解;
(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據(jù)AB、BC的長度可得AG=AF,然后利用等邊對等角的性質可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;
②設BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com