在△ABC中,AB=AC=8,∠BAC=120°,取一把含30°角的三角板,把30°角的頂點(diǎn)放在BC上一點(diǎn)D處,三角板繞點(diǎn)D旋轉(zhuǎn).
(1)當(dāng)三角板的兩邊分別交邊AB、AC于點(diǎn)E、F時(shí),求證:△BDE∽△CFD.
(2)當(dāng)三角板的兩邊分別交邊AB、邊CA的延長(zhǎng)線于點(diǎn)E、F時(shí),上述結(jié)論還成立嗎?(直接回答,無需證明)
(3)當(dāng)D點(diǎn)的位置是BC的中點(diǎn)時(shí),連接E,F(xiàn),△BDE與△DFE是否相似?并予以證明.
(4)若三角板的一邊過點(diǎn)A(E與A重合),另一邊與AC交于F,設(shè)BD=x,AF=y,求y關(guān)于x的函數(shù)解析式.
分析:(1)若要證明△BDE∽△CFD,只要找到兩對(duì)相等的角即可,利用等腰三角形的性質(zhì)和30°角的特點(diǎn)證明即可;
(2)△BDE與△CFD相似,證明思路和(1)相同;
(3)△BDE與△DFE相似,根據(jù)由一對(duì)角相等以及夾邊的比值相等的兩個(gè)三角形相似證明即可;
(4)由(1)可知△ABD∽△DFC,得到
AB
DC
=
BD
CF
,根據(jù)勾股定理求出底邊BC的長(zhǎng),因?yàn)锽D=x,所以CD=BC-x,AF=y,則CF=8-y,代入比例式整理即可得到y(tǒng)關(guān)于x的函數(shù)解析式.
解答:(1)證明:∵AB=AC=8,∠BAC=120°,
∴∠B=∠C=30°
∴∠BDE+∠BED=150°,
∵∠EDF=30°,
∴∠BDE+∠CDF=150°,
∴∠BED=∠CDF,
∴△BDE∽△CFD;

(2)解:△BDE與△CFD相似,理由如下:
∵AB=AC=8,∠BAC=120°,
∴∠B=∠C=30°,
∴∠BDE+∠BED=150°,
∵∠EDF=30°,
∴∠BDE+∠CDF=150°,
∴∠BED=∠CDF,
∴△BDE∽△CFD;

(3)△BDE與△DFE相似,理由如下:
∵△BDE∽△CFD,
BE
CD
=
DE
FD

∵BD=CD,
BE
BD
=
DE
FD

BE
DE
=
BD
FD
,
又∵∠B=∠FDC=30°,
∴△BDE∽△DFE;

(4)由(1)可知△ABD∽△DFC,
AB
DC
=
BD
CF

∵AB=AC=8,
∴BC=8
3

∵BD=x,AF=y,
∴CD=8
3
-x,CF=8-y,
8
8
3
-x
=
x
8-y

∴y=
1
8
x2-
3
x+8.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì),以及由相似三角形的性質(zhì):對(duì)應(yīng)邊的比值相等得到邊長(zhǎng)之間的函數(shù)關(guān)系,題目的綜合性不小,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案