【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數(shù).
(2)若∠CEF=135°,求證:EF∥BC.
【答案】(1)15°(2)證明見(jiàn)解析
【解析】
(1)由圖示知∠DCE=∠DCB-∠ECB,由∠B=30°,CD⊥AB于D,利用內(nèi)角和定理,求出∠DCB的度數(shù),又由角平分線定義得∠ECB=∠ACB,則∠DCE的度數(shù)可求;(2)根據(jù)∠CEF+∠ECB=180°,由同旁內(nèi)角互補(bǔ),兩直線平行可以證明EF∥BC.
(1)∵∠B=30°,CD⊥AB于D,
∴∠DCB=90°-∠B=60°,
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB=∠ACB=45°,
∴∠DCE=∠DCB-∠ECB=60°-45°=15°;
(2)∵∠CEF=135°,∠ECB=∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:
解方程﹣=1
老師說(shuō):這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說(shuō)的方法進(jìn)行了解答,小明同學(xué)的解題過(guò)程如下:
解:方程兩邊同時(shí)乘以6,得×6﹣×6=1…………①
去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②
去括號(hào),得:4﹣6x﹣3x+15=1……………③
移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…………④
合并同類(lèi)項(xiàng),得﹣9x=﹣18……………⑤
系數(shù)化1,得:x=2………………⑥
上述小明的解題過(guò)程從第 步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是 .
請(qǐng)幫小明改正錯(cuò)誤,寫(xiě)出完整的解題過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)觀察下面的日歷,回答下列問(wèn)題:
(1)任意用正方形框圈出四個(gè)日期,如果正方形框中的第一個(gè)數(shù)(左上角的數(shù))為,用代數(shù)式表示正方形框中的四個(gè)數(shù)的和;
(2)若將正方形框上下左右移動(dòng),可框住另外的四個(gè)數(shù),這四個(gè)數(shù)的和能等于嗎?如果能,依次寫(xiě)出這四個(gè)數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來(lái)水收費(fèi)的價(jià)目表如下表(注:水費(fèi)按月份結(jié)算,表示立方米):請(qǐng)根據(jù)上表的內(nèi)容解答下列問(wèn)題:
(1)填空:若該戶居民月份用水,則應(yīng)收水費(fèi)___________元;
(2)若該戶居民月份用水 (其中),則應(yīng)收水費(fèi)多少元?
價(jià)目表
每月用水量 | 單價(jià) |
不超過(guò)6的部分 | 2元/ |
超出6不超出10的部分 | 4元/ |
超出10的部分 | 8元/ |
(3)若該戶居民、兩個(gè)月共用水(月份用水量超過(guò)了月份),設(shè)月份用水,求該戶居民、兩個(gè)月共交水費(fèi)多少元?(答案可含有)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等邊三角形,D是BC邊上的一個(gè)動(dòng)點(diǎn)點(diǎn)D不與B,C重合是以AD為邊的等邊三角形,過(guò)點(diǎn)F作BC的平行線交射線AC于點(diǎn)E,連接BF.
如圖1,求證:≌;
請(qǐng)判斷圖1中四邊形BCEF的形狀,并說(shuō)明理由;
若D點(diǎn)在BC邊的延長(zhǎng)線上,如圖2,其它條件不變,請(qǐng)問(wèn)中結(jié)論還成立嗎?如果成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公園有一塊正方形的空地,后來(lái)從這塊空地上劃出部分區(qū)域栽種鮮花(如圖),原空地一邊減少了1m,另一邊減少了2m,剩余空地的面積為18m2 , 求原正方形空地的邊長(zhǎng).設(shè)原正方形的空地的邊長(zhǎng)為xm,則可列方程為( 。
A.(x+1)(x+2)=18
B.x2﹣3x+16=0
C.(x﹣1)(x﹣2)=18
D.x2+3x+16=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫(huà)出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD-CD=8-2=6,
則BC的長(zhǎng)為6或10.
【題型】填空題
【結(jié)束】
12
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過(guò)P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種子商店銷(xiāo)售“黃金一號(hào)”玉米種子,為惠民促銷(xiāo),推出兩種銷(xiāo)售方案供采購(gòu)者選擇.
方案一:每千克種子價(jià)格為4元,均不打折;
方案二:購(gòu)買(mǎi)3千克以內(nèi)(含3千克)的價(jià)格為每千克5元,若一次購(gòu)買(mǎi)超過(guò)3千克,則超出部分的種子打七折.
(1)請(qǐng)分別求出方案一、方案二中購(gòu)買(mǎi)的種子數(shù)量x(千克)與付款金額y(元)之間的函數(shù)關(guān)系式;
(2)若你去購(gòu)買(mǎi)一定量的種子,你會(huì)怎樣選擇方案?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知∠DAB=∠DCB,AF平分∠DAB,CE平分∠DCB,∠FCE=∠CEB,試說(shuō)明:AF∥CE。
解:(1)因?yàn)?/span>∠DAB=∠DCB( ),
又AF平分∠DAB,
所以_____=∠DAB( ),
又因?yàn)?/span>CE平分∠DCB,
所以∠FCE=_____( ),
所以∠FAE=∠FCE。
因?yàn)?/span>∠FCE=∠CEB,
所以______=________
所以AF∥CE( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com