直線a、b相交于點(diǎn)A,C、E分別是直線b、a上兩點(diǎn)且BC⊥a,DE⊥b,點(diǎn)M、N是中點(diǎn).求證:
(1)DM=BM;
(2)MN⊥BD.
(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由BC⊥a,DE⊥b,易得△CBE,△CDE為直角三角形,又由點(diǎn)M是EC中點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得:DM=BM;
(2)根據(jù)等腰三角形中的三線合一,即可證得.
試題解析:(1)∵BC⊥a,DE⊥b,
∴∠CDE=∠CBE=90°,
∴△CBE,△CDE為直角三角形,
∵點(diǎn)M是中點(diǎn),
∴DM=BM=EC,
∴DM=BM;
(2)∵DM=BM,
∴△MDB為等腰三角形,
又∵N為BD的中點(diǎn),
∴MN為BD邊上的中線,
∴MN⊥BD(三線合一).
考點(diǎn): 1.直角三角形斜邊上的中線;2.等腰三角形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com