【題目】把下列多項式因式分解

(1)6a2+12ab+6b2

(2)2a(x2+4)2-32ax2

【答案】(1)6(a+b)2(2)2a(x+2)2(x-2)2

【解析】

(1)先提公因式,再運用公式法,即可得到結(jié)果;

(2)先提公因式,再運用公式法,即可得到結(jié)果.

解:(1)6a2+12ab+6b2=6(a2+2ab+b2)=6(a+b)2

(2)2a(x2+4)2-32ax2

=2a[(x2+4)2-16x2]

=2a(x2+4x+4)(x2-4x+4)

=2a(x+2)2(x-2)2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.

1)求證:BC是⊙O的切線;

2)連接AF,BF,求∠ABF的度數(shù);

3)如果CD=15,BE=10,sinA=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l上兩點A、B(點A在點B左邊),且AB=10cm,在直線l上增加兩點C、D(點C在點D左邊),作線段AD點中點M、作線段BC點中點N;若線段MN=3 cm,則線段CD=_______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前我市“校園手機”現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,隨機抽查了某中學九年級的同學,關(guān)于手機在中學生中的主要用途做了調(diào)查,對調(diào)查數(shù)據(jù)進行統(tǒng)計整理、制作了如下的兩種統(tǒng)計圖:請根據(jù)圖形回答問題

(1)這次被調(diào)查的學生共有______人,其中主要用于“上網(wǎng)聊天”的學生人數(shù)占抽樣人數(shù)的百分比為_____;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)若該校共有3000名學生,請你估計主要使用手機玩游戲的人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有三個點A、B、C,表示的數(shù)分別是﹣4、﹣2、3,請回答:

(1)若使C、B兩點的距離與A、B兩點的距離相等,則需將點C向左移動_____個單位;

(2)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,運動t秒鐘過后:

點A、B、C表示的數(shù)分別是_____、__________ (用含t的代數(shù)式表示);

若點B與點C之間的距離表示為d1,點A與點B之間的距離表示為d2.試問:d1﹣d2的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求出d1﹣d2值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長是(
A.7
B.9
C.10
D.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(結(jié)果都保留根號)

(1)求點P到海岸線l的距離;

(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)為了解小區(qū)500戶居民家庭平均月使用塑料袋的數(shù)量情況,隨機調(diào)查了10戶居民家庭月使用塑料袋的數(shù)量,結(jié)果如下(單位:只)65,70,85,74,86,7874,9282,94

根據(jù)統(tǒng)計情況,估計該小區(qū)這500戶家庭每月一共使用塑料袋_________只.

查看答案和解析>>

同步練習冊答案