【題目】如圖,半圓的圓心與坐標原點重合,半圓的半徑1,直線的解析式為若直線與半圓只有一個交點,則t的取值范圍是________.
【答案】或
【解析】
若直線與半圓只有一個交點,則有兩種情況:直線和半圓相切于點C或從直線A開始到直線過點B結束(不包括直線過點A),當直線和半圓相切于點C時,根據(jù)直線的解析式知直線與x軸所形成的的銳角是45°,從而求得∠DOC=45°,即可得出點C的坐標,進一步得出t的值;當直線過點B時,直線根據(jù)待定系數(shù)法求得t的值.
若直線與半圓只有一個交點,則有兩種情況:直線和半圓相切于點C或從直線A開始到直線過點B結束(不包括直線過點A)
當直線和半圓相切于點C時,直線與x軸所形成的的銳角是45°,
∴∠DOC=45°,
又∵半圓的半徑1,
∴CD=OD=
∴
代入解析式,得
當直線過點A時,把A代入直線解析式,得
當直線過點B時,把B代入直線解析式,得
即當或,直線和半圓只有一個交點.
科目:初中數(shù)學 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB 在 x軸上,若 OA=2,將三角板繞原點 O 順時針旋轉 75°,則點 A 的對應點 A′ 的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形紙片ABCD中,AB=3,AD=9,折疊紙片ABCD,使頂點C落在邊AD上的點G處,折痕分別交邊AD、BC于點E、F,則△GEF的面積最大值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊△ABC邊長為2,D為BC中點,連接AD.點O在線段AD上運動(不含端點A、D),以點O為圓心,長為半徑作圓,當O與△ABC的邊有且只有兩個公共點時,DO的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c的頂點為B(–1,3),與x軸的交點A在點(–3,0)和(–2,0)之間,以下結論:①b2–4ac=0;②a+b+c>0;③2a–b=0;④c–a=3.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列條件求二次函數(shù)解析式
(1)已知一個二次函數(shù)的圖象經(jīng)過了點A(0,﹣1),B(1,0),C(﹣1,2);
(2)已知拋物線頂點P(﹣1,﹣8),且過點A(0,﹣6);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com