【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關(guān)系,現(xiàn)將△AEC繞A順時(shí)針旋轉(zhuǎn)90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關(guān)系式是 ;(無(wú)須證明)
(2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉(zhuǎn)變換,探究BD,DE,CE之間的等量關(guān)系,并證明你的結(jié)論.
【答案】(1) BD2+CE2=DE2; (2) BD2+DE2=CE2,證明見(jiàn)解析.
【解析】
(1)將△AEC繞A順時(shí)針旋轉(zhuǎn)90°后成△AFB,可證△AEC≌△AFB,故BF=CE,旋轉(zhuǎn)角∠FAE=90°,又∠DAE=45°,故∠FAD=∠FAE∠DAE=45°,易證△AFD≌△AED,故FD=DE,因?yàn)?/span>△ABC中,∠BAC=90°,AB=AC,所以∠ABC=∠FAB=45°,從而可得∠FAD=90°,在Rt△FBD中,由勾股定理得線(xiàn)段BD、DE、CE之間的等量關(guān)系式;
(2)方法同(1),由∠ADE=45°可得∠ADF=45°,故∠BDF=90°,斜邊BF=CE,直角邊DF=DE,由勾股定理建立等量關(guān)系.
(1) BD2+CE2=DE2;
(2)CE2=BD2+DE2.
證明:將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120 °得到△AFB,連接FD.
由旋轉(zhuǎn)的性質(zhì)可得△AEC≌△AFB,∴AF=AE,BF=CE,∠FAB=∠EAC.
∴∠FAE=∠FAB+∠BAE=∠EAC+∠BAE=∠BAC=120 °.
又∵∠DAE=60 °,
∴∠FAD=∠EAD=60 °.
在△ADF和△ADE中,
∴△ADF≌△ADE(SAS).
∴FD=DE,∠ADF=∠ADE.
∵∠ADE=45 °,
∴∠ADF=45 °,故∠BDF=90 °.
在Rt△BDF中,由勾股定理,得BF2=BD2+DF2.
∴CE2=BD2+DE2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】形如:的函數(shù)叫二次函數(shù),它的圖象是一條拋物線(xiàn).類(lèi)比一元一次方程的解可以看成兩條直線(xiàn)的交點(diǎn)的橫坐標(biāo);則一元二次方程的解可以看成拋物線(xiàn)與直線(xiàn)(軸)的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線(xiàn)與直線(xiàn)________的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線(xiàn)________與直線(xiàn)的交點(diǎn)的橫坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)關(guān)于的方程提出了下列問(wèn)題.
若使方程為一元二次方程,是否存在?若存在,求出并解此方程.
若使方程為一元一次方程,是否存在?若存在,請(qǐng)求出.你能解決這個(gè)問(wèn)題嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線(xiàn)上,且ED=EC.
(1)(特殊情況,探索結(jié)論)
如圖1,當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),確定線(xiàn)段AE與DB的大小關(guān)系,請(qǐng)你直接寫(xiě)出結(jié)論:
AE DB(填“>”、“<”或“=”).
(2)(特例啟發(fā),解答題目)
如圖2,當(dāng)點(diǎn)E為AB邊上任意一點(diǎn)時(shí),確定線(xiàn)段AE與DB的大小關(guān)系,請(qǐng)你直接寫(xiě)出結(jié)論,AE DB(填“>”、“<”或“=”);理由如下,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.(請(qǐng)你將解答過(guò)程完整寫(xiě)下來(lái)).
(3)(拓展結(jié)論,設(shè)計(jì)新題)
在等邊三角形ABC中,點(diǎn)E在直線(xiàn)AB上,點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,且ED=EC,若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng).(請(qǐng)你畫(huà)出相應(yīng)圖形,并直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)夫?qū)⑻O(píng)果樹(shù)種在正方形的果園內(nèi),為了保護(hù)蘋(píng)果樹(shù)不受風(fēng)吹,他在蘋(píng)果樹(shù)的周?chē)N上針葉樹(shù).在下圖里,你可以看到農(nóng)夫所種植蘋(píng)果樹(shù)的列數(shù)(n)和蘋(píng)果樹(shù)數(shù)量及針葉樹(shù)數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋(píng)果樹(shù)數(shù)量會(huì)等于針葉樹(shù)數(shù)量,則n為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,
(1)求∠F的度數(shù);
(2)若CD=5,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,L1反映了某公司產(chǎn)品的銷(xiāo)售收入(元)與銷(xiāo)售量的函數(shù)關(guān)系,L2反映了該公司產(chǎn)品的銷(xiāo)售成本(元)與銷(xiāo)售量的函數(shù)關(guān)系,根據(jù)圖象解答問(wèn)題:
(1)分別求出銷(xiāo)售收入和銷(xiāo)售成本與的函數(shù)關(guān)系式
(2)指出兩圖象的交點(diǎn)的實(shí)際意義,公司的銷(xiāo)售量至少要達(dá)到多少才能不虧損?
(3)如果該公司要盈利1萬(wàn)元,需要銷(xiāo)售多少?lài)嵁a(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)請(qǐng)你判斷AE、AF與BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)O是線(xiàn)段AD上一點(diǎn),OP=OC,
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線(xiàn)上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com