【題目】已知:如圖,△ABC中,P、Q兩點(diǎn)分別是邊AB和AC的垂直平分線與BC的交點(diǎn),連結(jié)AP和AQ,且BP=PQ=QC.求∠C的度數(shù).
證明:∵P、Q兩點(diǎn)分別是邊AB和AC的垂直平分線與BC的交點(diǎn),
∴PA= ,QC=QA.
∵BP=PQ=QC,
∴在△APQ中,PQ= (等量代換)
∴△APQ是 三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠ .
又∵∠AQP是△AQC的外角,
∴∠AQP=∠ +∠ =60°.(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)
∴∠C= .
【答案】BP,垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等,PA=QA,等邊,QAC,C,QAC,30°.
【解析】
根據(jù)線段垂直平分線的性質(zhì)可得PA=BP,QC=QA,再根據(jù)等量關(guān)系可得PQ=PA=QA,可得△APQ是 等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠AQP=60°,再根據(jù)三角形三角形外角的性質(zhì)和等腰的性質(zhì)可求∠C的度數(shù).
解:證明:∵P、Q兩點(diǎn)分別是邊AB和AC的垂直平分線與BC的交點(diǎn),
∴PA=BP,QC=QA.(垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等)
∵BP=PQ=QC,
∴在△APQ中,PQ=PA=QA(等量代換)
∴△APQ是等邊三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠QAC.
又∵∠AQP是△AQC的外角,
∴∠AQP=∠C+∠QAC=60°.
(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)
∴∠C=30°.
故答案為:BP,(垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等),PA=QA,等邊,QAC,C,QAC,30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,我們把半徑為1的圓叫做單位圓,在平面直角坐標(biāo)系xOy中,設(shè)單位圓的圓心與坐標(biāo)原點(diǎn)O重合,則單位圓與x軸的交點(diǎn)分別為(1,0),(﹣1,0),與y軸的交點(diǎn)分別為(0,1),(0,﹣1).在平面直角坐標(biāo)系xOy中,設(shè)銳角α的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,α的一邊與x軸的正半軸重合,另一邊與單位圓交于點(diǎn)P(x1,y1),且點(diǎn)P在第一象限.
(1)求x1(用含α的式子表示);y1(用含α的式子表示);
(2)將射線OP繞坐標(biāo)原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與單位圓交于點(diǎn)Q(x2,y2).
①判斷y1與x2的數(shù)量關(guān)系,并證明;
②寫(xiě)出y1+y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,將△ABD沿BD(對(duì)稱(chēng)軸)翻折,點(diǎn)A落在點(diǎn)E處,連接AE,CE.
(1)如圖1,當(dāng)∠AEC=90°時(shí),求證:CD=AD;
(2)當(dāng)點(diǎn)E落在BC邊所在直線上,且∠AEC=60°時(shí).
①猜想△BAE是什么三角形并證明;
②試求線段CD、AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且DA=DB,此時(shí)△ACD也恰好為等腰三角形,則∠BAC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若,則△A6B6A7的邊長(zhǎng)為( )
A.6B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰三角形ABC中,∠ABC=90度,D是AC邊上的動(dòng)點(diǎn),連結(jié)BD,E、F分別是AB、BC上的點(diǎn),且DE⊥DF.、(1)如圖1,若D為AC邊上的中點(diǎn).
(1)填空:∠C= ,∠DBC= ;
(2)求證:△BDE≌△CDF.
(3)如圖2,D從點(diǎn)C出發(fā),點(diǎn)E在PD上,以每秒1個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),過(guò)點(diǎn)B作BP∥AC,且PB=AC=4,點(diǎn)E在PD上,設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒(0≤1≤4)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,圖中能否出現(xiàn)全等三角形?若能,請(qǐng)直接寫(xiě)出t的值以及所對(duì)應(yīng)的全等三角形的對(duì)數(shù),若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,彈性小球從點(diǎn)P(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到矩形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第1次碰到矩形的邊時(shí)的點(diǎn)為P1,第2次碰到矩形的邊時(shí)的點(diǎn)為P2,…,第n次碰到矩形的邊時(shí)的點(diǎn)為Pn,點(diǎn)P2019的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請(qǐng)用畫(huà)樹(shù)狀圖的方法給出分析過(guò)程,并求出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com