【題目】已知:如圖,△ABC中,P、Q兩點(diǎn)分別是邊ABAC的垂直平分線與BC的交點(diǎn),連結(jié)APAQ,且BPPQQC.求∠C的度數(shù).

證明:∵P、Q兩點(diǎn)分別是邊ABAC的垂直平分線與BC的交點(diǎn),

PA   ,QCQA   

BPPQQC,

∴在△APQ中,PQ   (等量代換)

∴△APQ   三角形.

∴∠AQP60°,

∵在△AQC中,QCQA,

∴∠C=∠   

又∵∠AQP是△AQC的外角,

∴∠AQP=∠   +   60°.(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)

∴∠C   

【答案】BP,垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等,PAQA,等邊,QAC,C,QAC30°

【解析】

根據(jù)線段垂直平分線的性質(zhì)可得PABP,QCQA,再根據(jù)等量關(guān)系可得PQPAQA,可得△APQ 等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠AQP60°,再根據(jù)三角形三角形外角的性質(zhì)和等腰的性質(zhì)可求∠C的度數(shù).

解:證明:∵PQ兩點(diǎn)分別是邊ABAC的垂直平分線與BC的交點(diǎn),

PABPQCQA.(垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等)

BPPQQC

∴在△APQ中,PQPAQA(等量代換)

∴△APQ是等邊三角形.

∴∠AQP60°

∵在△AQC中,QCQA

∴∠C=∠QAC

又∵∠AQP是△AQC的外角,

∴∠AQP=∠C+QAC60°

(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)

∴∠C30°

故答案為:BP,(垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等),PAQA,等邊,QACC,QAC,30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般地,我們把半徑為1的圓叫做單位圓,在平面直角坐標(biāo)系xOy中,設(shè)單位圓的圓心與坐標(biāo)原點(diǎn)O重合,則單位圓與x軸的交點(diǎn)分別為(1,0),(﹣1,0),與y軸的交點(diǎn)分別為(0,1),(0,﹣1).在平面直角坐標(biāo)系xOy中,設(shè)銳角α的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,α的一邊與x軸的正半軸重合,另一邊與單位圓交于點(diǎn)P(x1,y1),且點(diǎn)P在第一象限.

(1)x1(用含α的式子表示);y1(用含α的式子表示);

(2)將射線OP繞坐標(biāo)原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與單位圓交于點(diǎn)Q(x2,y2).

判斷y1與x2的數(shù)量關(guān)系,并證明;

寫(xiě)出y1+y2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D在邊AC上,將△ABD沿BD(對(duì)稱(chēng)軸)翻折,點(diǎn)A落在點(diǎn)E處,連接AE,CE

1)如圖1,當(dāng)∠AEC90°時(shí),求證:CDAD

2)當(dāng)點(diǎn)E落在BC邊所在直線上,且∠AEC60°時(shí).

①猜想△BAE是什么三角形并證明;

②試求線段CD、AD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABAC,點(diǎn)DBC上一點(diǎn),且DADB,此時(shí)ACD也恰好為等腰三角形,則∠BAC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠MON30°,點(diǎn)A1、A2A3在射線ON上,點(diǎn)B1、B2B3在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4均為等邊三角形,若,則△A6B6A7的邊長(zhǎng)為(  )

A.6B.12C.16D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰三角形ABC中,∠ABC90度,DAC邊上的動(dòng)點(diǎn),連結(jié)BD,EF分別是AB、BC上的點(diǎn),且DEDF.、(1)如圖1,若DAC邊上的中點(diǎn).

1)填空:∠C   ,∠DBC   

2)求證:BDE≌△CDF

3)如圖2,D從點(diǎn)C出發(fā),點(diǎn)EPD上,以每秒1個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),過(guò)點(diǎn)BBPAC,且PBAC4,點(diǎn)EPD上,設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒(0≤1≤4)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,圖中能否出現(xiàn)全等三角形?若能,請(qǐng)直接寫(xiě)出t的值以及所對(duì)應(yīng)的全等三角形的對(duì)數(shù),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,彈性小球從點(diǎn)P0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到矩形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第1次碰到矩形的邊時(shí)的點(diǎn)為P1,第2次碰到矩形的邊時(shí)的點(diǎn)為P2,…,第n次碰到矩形的邊時(shí)的點(diǎn)為Pn,點(diǎn)P2019的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請(qǐng)用畫(huà)樹(shù)狀圖的方法給出分析過(guò)程,并求出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案