精英家教網 > 初中數學 > 題目詳情

【題目】若(x2+px+q)(x﹣2)展開后不含x的一次項,則p與q的關系是(
A.p=2q
B.q=2p
C.p+2q=0
D.q+2p=0

【答案】B
【解析】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q, ∵結果不含x的一次項,
∴q﹣2p=0,即q=2p.
故選B.
【考點精析】本題主要考查了多項式乘多項式的相關知識點,需要掌握多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:a是﹣1,且a、b、c滿足(c﹣6)2+|2a+b|=0,請回答問題:
(1)請直接寫出b、c的值:b= , c=
(2)在數軸上,a、b、c所對應的點分別為A、B、C,點P為易動點,其對應的數為x,
(a)當點P在AB間運動(不包括A、B),試求出P點與A、B、C三點的距離之和.
(b)當點P從A點出發(fā),向右運動,請根據運動的不同情況,化簡式子:|x+1|﹣|x﹣2|+2|x﹣6|(請寫出化簡過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC的兩個頂點A、B 的坐標分別A( ,0)、B( ,2),∠CAO=30°.

(1)求對角線AC所在的直線的函數表達式;
(2)把矩形OABC以AC所在的直線為對稱軸翻折,點O落在平面上的點D處,求點D的坐標;
(3)在平面內是否存在點P,使得以A、O、D、P為頂點的四邊形為平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=x2﹣2x﹣3的圖象的頂點坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算中,正確的是(  )

A. (﹣3)2=﹣9 B. ﹣(+3)=3

C. 2(3x+2)=6x+2 D. 3a﹣2aa

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為改善南寧市的交通現狀,市政府決定修建地鐵,甲、乙兩工程隊承包地鐵1號線的某段修建工作,從投標書中得知:甲隊單獨完成這項工程所需天數是乙隊單獨完成這項工程所需天數的3倍;若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作10天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為15.6萬元,乙隊每天的施工費用為18.4萬元,工程預算的施工費用為500萬元,為縮短工期,擬安排甲、乙兩隊同時開工合作完成這項工程,那么工程預算的施工費用是否夠用?若不夠用,需增加多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在體育模擬考中,某6人小組的1000米長跑得分(單位:分)分別為:10,9,8,10,109,則這組數據的眾數和中位數分別是(

A. 9分,8B. 9分,9.5C. 10分,9D. 10分,9.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x﹣4與坐標軸相交于A、BC三點,P是線段AB上一動點(端點除外),過PPDAC,交BC于點D,連接CP

1)直接寫出A、BC的坐標;

2)求拋物線y=﹣x﹣4的對稱軸和頂點坐標;

3)求△PCD面積的最大值,并判斷當△PCD的面積取最大值時,以PA、PD為鄰邊的平行四邊形是否為菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:
老舍先生曾說“天堂是什么樣子,我不曉得,但從我的生活經驗去判斷,北平之秋便是天堂.”(摘自《住的夢》)金黃色的銀杏葉為北京的秋增色不少.
小宇家附近新修了一段公路,他想給市政寫信,建議在路的兩邊種上銀杏樹.他先讓爸爸開車駛過這段公路,發(fā)現速度為60千米/小時,走了約3分鐘,由此估算這段路長約千米.
然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹樹冠直徑可達8米.小宇計劃從路的起點開始,每a米種一棵樹,繪制示意圖如下:

考慮到投入資金的限制,他設計了另一種方案,將原計劃的a擴大一倍,則路的兩側共計減少200棵樹,請你求出a的值.

查看答案和解析>>

同步練習冊答案