【題目】某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米.設(shè)這個苗圃園垂直于墻的一邊的長為x米
(1)用含x的代數(shù)式表示平行于墻的一邊的長為____米,.x的取值范圍為____
(2)這個苗圃園的面積為88平方米時,求x的值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AB=BC,∠B=∠C=90°,P是BC邊上一點,AP⊥PD,E是AB邊上一點,∠BPE=∠BAP.
(1) 如圖1,若AE=PE,直接寫出=______;
(2) 如圖2,求證:AP=PD+PE;
(3) 如圖3,當(dāng)AE=BP時,連BD,則=______,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.四邊形ABCD的頂點在格點上,點E是邊DC與網(wǎng)格線的交點.請選擇適當(dāng)?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.
(1)如圖1,過點A畫線段AF,使AF∥DC,且AF=DC.
(2)如圖1,在邊AB上畫一點G,使∠AGD=∠BGC.
(3)如圖2,過點E畫線段EM,使EM∥AB,且EM=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=10,OA與⊙O相交于點P,AB與⊙O切于點B,BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=4,求⊙O的半徑和線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形 ABC 的周長為 10cm,底邊 BC 長為 y(cm),腰 AB 長為 x(cm).
(1)求 y 與 x 之間的函數(shù)關(guān)系式;
(2)求 x 的取值范圍;
(3)腰長 AB=3 時,底邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com