【題目】下列說法正確的是_____.①在同一平面內(nèi),a,bc為直線,若ab,bc,則ac.②“若acbc,則ab”的逆命題是真命題.③若Ma2),N1,b)關(guān)于x軸對稱,則a+b=﹣1.④一個多邊形的邊數(shù)增加1條時,內(nèi)角和增加180°,外角和不變.⑤的整數(shù)部分是a,小數(shù)部分是b,則ab33

【答案】①③④

【解析】

根據(jù)平行線的判定定理,不等式的性質(zhì),關(guān)于x軸對稱的點的坐標特征,多邊形的內(nèi)角和和外角和,算術(shù)平方根的估算方法解答.

解:在同一平面內(nèi),a,b,c為直線,若ab,bc,則ac,①正確;

acbc,則ab”的逆命題是ab,則acbc”,是假命題,②錯誤;

Ma,2),N1,b)關(guān)于x軸對稱,則a1,b=﹣2,

a+b=﹣1,③正確;

一個多邊形的邊數(shù)增加1條時,內(nèi)角和增加180°,外角和不變,④正確;

的整數(shù)部分是a,小數(shù)部分是b

a3b3,

ab39,⑤錯誤;

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更新樹木品種,某植物園計劃購進甲、乙兩個品種的樹苗栽植培育若計劃購進這兩種樹苗共41棵,其中甲種樹苗的單價為6/棵,購買乙種樹苗所需費用y()與購買數(shù)量x()之間的函數(shù)關(guān)系如圖所示.

(1)求出yx的函數(shù)關(guān)系式;

(2)若在購買計劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量.請設(shè)計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC的邊BC在直線l上,ACBC,且AC=BC;EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP

1)將EFP沿直線l向左平移到圖2的位置時,EPAC于點Q,連接AP,BQ.猜想并寫出BQAP所滿足的數(shù)量關(guān)系,請證明你的猜想;
2)將EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ.你認為(1)中所猜想的BQAP的數(shù)量關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由;
3)若AC=BC=4,設(shè)EFP平移的距離為x,當0≤x≤8時,EFPABC重疊部分的面積為S,請寫出Sx之間的函數(shù)關(guān)系式,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個不透明的口袋中,分別有4個和3個大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上標有數(shù)字01,2,3,乙口袋中的小球上分別標有數(shù)字12,3,先從甲口袋中隨機摸出一個小球,記下數(shù)字為,再從乙口袋中隨機摸出一個小球,記下數(shù)字為

1)請用列表法或畫樹狀圖的方法表示出所有可能的結(jié)果;

2)規(guī)定:若都是方程的解時,則小明獲勝;若都不是方程的解時,則小宇獲勝,問他們兩人誰獲勝的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與直線都經(jīng)過點,且直線軸于點,交軸于點,連接.

1)直接寫出,的值及直線的函數(shù)表達式;

2的面積相等嗎?寫出你的判斷,并說明理由;

3)若點軸上一點,當的值最小時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A40),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數(shù)y1和過PA兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OBAC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于()

A.B.C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AB3,BC4,∠ABC90°,過BA1BAC,過A1A1B1BC,得陰影RtA1B1B;再過B1B1A2AC,過A2A2B2BC,得陰影RtA2B2B1;如此下去.請猜測這樣得到的所有陰影三角形的面積之和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B的坐標為(4,2),直線y=﹣x+與邊AB,BC分別相交于點M,N,函數(shù)y=(x>0)的圖象過點M.

(1)試說明點N也在函數(shù)y=(x>0)的圖象上;

(2)將直線MN沿y軸的負方向平移得到直線M′N′,當直線M′N′與函數(shù)y(x>0)的圖象僅有一個交點時,求直線M'N′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸于點兩點,與軸交于點.直線經(jīng)過點,與拋物線另一個交點為,點是拋物線上一動點,過點軸于點,交直線于點.

1)求拋物線的解析式;

2)當點在直線上方,且是以為腰的等腰三角形時,求點的坐標;

3)如圖2,連接,以點為直角頂點,線段為較長直角邊,構(gòu)造兩直角邊比為12,是否存在點,使點恰好落在直線上?若存在,請直接寫出相應(yīng)點的橫坐標(寫出兩個即可);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案