【題目】計(jì)算:
(1)
(2)
(3)
(4)
【答案】(1)0;(2)-4x3y2;(3)32yz+16xz-;(4)1
【解析】
(1)逆用積的乘方公式可簡便計(jì)算,最后相加減可得;
(2)原式先利用積的乘方及冪的乘方運(yùn)算法則計(jì)算,再利用單項(xiàng)式乘以單項(xiàng)式及單項(xiàng)式除以單項(xiàng)式法則計(jì)算,即可得到結(jié)果;
(3)先算乘方,再根據(jù)多項(xiàng)式除以單項(xiàng)式的法則進(jìn)行計(jì)算即可;
(4)根據(jù)平方差公式變形計(jì)算即可.
(1)
=8
=8
=8+1-9
=0;
(2)
=(8x6y3)(-7xy2)÷(14x4y3)
=-56x7y5÷(14x4y3)
=-4x3y2;
(3)
=
=32yz+16xz-;
(4)
=1232-(123+1)(123-1)
=1232-1232+1
=1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空:
(a-b)(a+b)=________;
(a-b)(a2+ab+b2)=________;
(a-b)(a3+a2b+ab2+b3)=________;
(2)猜想:
(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=________(其中n為正整數(shù),且n≥2);
(3)利用(2)猜想的結(jié)論計(jì)算:
①29+28+27+…+22+2+1;
②210-29+28-…-23+22-2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設(shè)井深為x尺,根據(jù)題意列方程,正確的是( )
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/s;P、Q同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)O從OA上以每秒5°的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是t(s).
(1)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OC是∠AOB的角平分線嗎?如果是請說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請求出t的值并求出此時(shí)∠BOC的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為給研究制定《中考改革實(shí)施方案》提出合理化建議,教研人員對九年級學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,要求被抽查的學(xué)生從物理、化學(xué)、政治、歷史、生物和地理這六個(gè)選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生共有多少人?
(2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)我市現(xiàn)有九年級學(xué)生約40000人,請你估計(jì)首選科目是物理的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積.方法1:______;方法2:_______.
(2)觀察圖2,請你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系._______;
(3)類似的,請你用圖1中的三種紙片拼一個(gè)使長方形面積為:3a2+7ab+2b2,并對3a2+7ab+2b2因式分解為_______.
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點(diǎn),連接CE,BD,過點(diǎn)E作FE⊥CE于點(diǎn)E,交AD于點(diǎn)F,連接CF,已知2AD=AB=BC.
(1)求證:CE=BD;
(2)若AB=4,求AF的長度;
(3)求sin∠EFC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進(jìn)行了三項(xiàng)素質(zhì)測試.各項(xiàng)測試成績?nèi)绫砀袼荆?/span>
測試項(xiàng)目 | 測試成績 | ||
甲 | 乙 | 丙 | |
專業(yè)知識 | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)如果根據(jù)三次測試的平均成績確定人選,那么誰將被錄用?
(2)根據(jù)實(shí)際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項(xiàng)測試得分按4:3:1的比例確定每個(gè)人的測試總成績,此時(shí)誰將被錄用?
(3)請重新設(shè)計(jì)專業(yè)知識、語言能力和綜合素質(zhì)三項(xiàng)測試得分的比例來確定每個(gè)人的測試總成績,使得乙被錄用,若重新設(shè)計(jì)的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:
(3)判斷△ECG的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com