【題目】如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點(diǎn),且BP=2CP.
(1)用尺規(guī)在圖①中作出CD邊上的中點(diǎn)E,連接AE、BE(保留作圖痕跡,不寫(xiě)作法);
(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說(shuō)明理由;
(3)如圖③,在(2)的條件下,連接EP并廷長(zhǎng)交AB的廷長(zhǎng)線于點(diǎn)F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過(guò)P點(diǎn)的兩次變換與△PAE組成一個(gè)等腰三角形?如果能,說(shuō)明理由,并寫(xiě)出兩種方法(指出對(duì)稱(chēng)軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)
【答案】(1)作圖見(jiàn)解析;(2)EB是平分∠AEC,理由見(jiàn)解析; (3)△PFB能由都經(jīng)過(guò)P點(diǎn)的兩次變換與△PAE組成一個(gè)等腰三角形,變換的方法為:將△BPF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.
【解析】(1)根據(jù)作線段的垂直平分線的方法作圖即可得出結(jié)論;
(2)先求出DE=CE=1,進(jìn)而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數(shù)求出∠AED,即可得出結(jié)論;
(3)先判斷出△AEP≌△FBP,即可得出結(jié)論.
(1)依題意作出圖形如圖①所示;
(2)EB是平分∠AEC,理由:
∵四邊形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵點(diǎn)E是CD的中點(diǎn),
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都經(jīng)過(guò)P點(diǎn)的兩次變換與△PAE組成一個(gè)等腰三角形,
變換的方法為:將△BPF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一道證明題,李老師已給同學(xué)們講解了思路.請(qǐng)你將過(guò)程和理由補(bǔ)充完整.
已知∠1=∠2,∠A=∠E. 求證:AD∥BE.
證明:∵∠1=∠2 (已知)
∴AC∥________(___________________________________)
∴∠3= _______ (___________________________________)
又∵∠A=∠E(___________)
∴∠A=______(___________________)
∴AD∥BE (_________________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝建國(guó)七十周年,南崗區(qū)準(zhǔn)備對(duì)某道路工程進(jìn)行改造,若請(qǐng)甲工程隊(duì)單獨(dú)做此工程需4個(gè)月完成,若請(qǐng)乙工程隊(duì)單獨(dú)做此工程需6個(gè)月完成,若甲、乙兩隊(duì)合作2個(gè)月后,甲工程隊(duì)到期撤離,則乙工程隊(duì)再單獨(dú)需幾個(gè)月能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.
(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(-1,5),B(-1,0),C(-4,3).
(Ⅰ)求△ABC的面積;
(Ⅱ)在圖中作出△ABC關(guān)于軸的對(duì)稱(chēng)圖形△A1B1C1,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)P是等邊△ABC的BC邊上一點(diǎn),PM⊥AB,PN⊥AC,試猜想△AMN的周長(zhǎng)L△AMN與四邊形BMNC的周長(zhǎng)L四邊形BMNC有什么關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱形玻璃容器高20cm,底面圓的周長(zhǎng)為48cm,在外側(cè)距下底1cm的點(diǎn)A處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距上口1cm的點(diǎn)B處有一只蒼蠅,則蜘蛛捕獲蒼蠅所走的最短路線長(zhǎng)度為( ).
A. 30cmB. 25cmC. D. 以上答案均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某校舉辦秋季運(yùn)動(dòng)會(huì),七(1)班和七(2)班進(jìn)行拔河比賽,比賽規(guī)定標(biāo)志物紅綢向某班方向移動(dòng)或以上,該班就獲勝.紅綢先向(2)班移動(dòng),后又向(1)班移動(dòng),相持幾秒后,紅綢向(2)班移動(dòng),隨后又向(1)班移動(dòng),在一片歡呼聲中,紅綢再向(1)班移動(dòng),裁判員一聲哨響,比賽結(jié)束,請(qǐng)你用計(jì)算的方法說(shuō)明最終獲勝的是幾班;
(2)已知、互為相反數(shù),、互為倒數(shù),的絕對(duì)值為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫(xiě)出各點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到,在圖中畫(huà)出三角形ABC變化后的位置,寫(xiě)出A′、B′、C′的坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com