(2013•門(mén)頭溝區(qū)二模)如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)D在⊙O上,且∠A=30°,∠ABD=2∠BDC.
(1)求證:CD是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)O作OF∥AD,分別交BD、CD于點(diǎn)E、F.若OB=2,求OE和CF的長(zhǎng).
分析:(1)首先連接OD,由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠ADB=90°,又由∠A=30°,∠ABD=2∠BDC,易證得△ODB是等邊三角形,繼而求得∠ODC=90°,即CD是⊙O的切線(xiàn);
(2)由三角函數(shù)的性質(zhì),即可求得CD與DF的長(zhǎng),繼而求得答案.
解答:(1)證明:連結(jié)OD.
∵AB是⊙O的直徑,
∴∠ADB=90°.  
∵∠A=30°,
∴∠ABD=60°.
∵∠ABD=2∠BDC,
∴∠BDC=
1
2
∠ABD=30°.
∵OD=OB,
∴△ODB是等邊三角形.
∴∠ODB=60°.
∴∠ODC=∠ODB+∠BDC=90°.
∴CD是⊙O的切線(xiàn).

(2)解:∵OF∥AD,∠ADB=90°,
∴OF⊥BD,∠BOE=∠A=30°. …(3分)
∵BD=OB=2,
∴DE=BE=
1
2
BD=1.
∴OE=
OB2-BE2
=
3

∵OD=OB=2,∠DOC=60°,∠DOF=30°,
∴CD=OD•tan60°=2
3
,DF=OD•tan30°=
2
3
3

∴CF=CD-DF=2
3
-
2
3
3
=
4
3
3
點(diǎn)評(píng):此題考查了切線(xiàn)的判定、等邊三角形的判定與性質(zhì)、勾股定理以及三角函數(shù)等知識(shí).此題難度適中,注意掌握輔助線(xiàn)的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱(chēng)為細(xì)顆粒物,是表征環(huán)境空氣質(zhì)量的主要污染物指標(biāo).2.5微米等于0.0000025米,把0.0000025用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)二模)已知圓錐側(cè)面展開(kāi)圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長(zhǎng)和圓心角的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E、F.設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)二模)某中學(xué)初三年級(jí)的學(xué)生開(kāi)展測(cè)量物體高度的實(shí)踐活動(dòng),他們要測(cè)量一幢建筑物AB的高度.如圖,他們先在點(diǎn)C處測(cè)得建筑物AB的頂點(diǎn)A的仰角為30°,然后向建筑物AB前進(jìn)20m到達(dá)點(diǎn)D處,又測(cè)得點(diǎn) A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)二模)如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是B(1,0)、C(3,0).直線(xiàn)AC與y軸交于點(diǎn)G(0,6).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn) Q從點(diǎn)C出發(fā),沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)求直線(xiàn)AC的解析式;
(2)當(dāng)t為何值時(shí),△CQE的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使得以C、Q、E、H為頂點(diǎn)的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊(cè)答案