【題目】如圖,直線AB、CD相交于點O,OD平分∠BOF,OECDO,若∠EOFα,下列說法①∠AOCα90°;②∠EOB180°α;③∠AOF360°,其中正確的是(

A. ①②B. ①③C. ②③D. ①②③

【答案】D

【解析】

根據(jù)題意,逐項

根據(jù)角平分線的性質,得出∠BOD=DOF,然后根據(jù)對頂角相等,得出∠BOD=AOC,進而得出∠AOC=DOF=EOF-EOD= α90°;②根據(jù)∠EOD=EOC=90°,∠BOD=DOF,得出∠EOB=180°-(COE+BOD),等角轉換,即可得出∠EOB180°α;③由∠AOF360°﹣(∠AOC+COE+EOD+DOF),然后等角轉換,即可得出∠AOF360°2α.

OD平分∠BOF,

則∠BOD=DOF,

又∵∠BOD=AOC,

∴∠AOC=DOF=EOF-EOD= α90°;符合題意;

∵∠EOD=EOC=90°,∠BOD=DOF,

∴∠EOB=180°-(COE+BOD)

=180°-(EOD+DOF)

=180°-EOF=180°-α;符合題意;

③∠AOF360°﹣(∠AOC+COE+EOD+DOF

=360°2(∠EOD+DOF

=360°-2EOF=360°-2α;符合題意;

故答案為:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=4,點M是OA的中點,過點M的直線與⊙O交于C,D兩點.若∠CMA=45°,則弦CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線 分別與x軸、y軸交于點B、C,且與直線 交于點A.

(1)分別求出點A、B、C的坐標;
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的函數(shù)表達式;
(3)在(2)的條件下,設P是射線CD上的點,在平面內是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,O△ABC的中心,∠FOG=120°,繞點O旋轉∠FOG,分別交線段AB,BCD,E兩點,連接DE,給出下列三個結論①OD=OE; SODE=SBDE;③四邊形ODBE的面積始終等于.述結論中正確的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2(m+1)x+m2=0,當m取何值時,方程有兩個實數(shù)根?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;

(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關系?說明理由

(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關系?猜想并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①為北斗七星的位置圖,圖②將北斗七星分別標為A,BC,D,E,FG,將AB,CD,E,F順次首尾連接,若AF恰好經過點G,且AFDE,∠B=∠C10°,∠D=∠E105°.

(1)求∠F的度數(shù);

(2)計算∠B-∠CGF的度數(shù)是______;(直接寫出結果)

(3)連接AD,∠ADE與∠CGF滿足怎樣數(shù)量關系時,BCAD,并說明理由.

查看答案和解析>>

同步練習冊答案