【題目】已知關于x的方程x2﹣2(m+1)x+m2=0,當m取何值時,方程有兩個實數(shù)根?
【答案】解:∵方程x2﹣2(m+1)x+m2=0有兩個實數(shù)根,
∴△=[﹣2(m+1)]2﹣4m2=8m+4≥0,
解得:m≥﹣ .
答:當m≥﹣ 時,方程有兩個實數(shù)根.
【解析】由方程有兩個實數(shù)根,得出b2-4ac≥0,建立不等式求解。
【考點精析】本題主要考查了求根公式和一元一次不等式的解法的相關知識點,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設甲與A地相距(km),乙與A地相距(km),甲離開A地的時間為x(h),,與x之間的函數(shù)圖象如圖所示.
(1)甲的速度是 km/h;
(2)當1≤x≤5時,求關于x的函數(shù)解析式;
(3)當乙與A地相距240km時,甲與A地相距 km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市美化工程招標時,有甲、乙兩個工程隊投標.經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識情境)通常情況下,用兩種不同的方法計算同一個圖形的面積,可以得到一個恒等式.
(1)如圖1,在邊長為的正方形中挖掉一個邊長為的小正方形.把余下的部分剪拼成一個長方形(如圖2).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是______________;
(拓展探究)類似地,用兩種不同的方法計算同一個幾何體的體積,也可以得到一個恒等式.
如圖3是邊長為的正方體,被如圖所示的分割線分成塊.
圖3
(2)用不同的方法計算這個正方體的體積,就可以得到一個恒等式,這個恒等式可以為:
_________________________________________________________________;
(3)已知,,利用上面的恒等式求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列說法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正確的是( )
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)把左右兩邊計算結(jié)果相等的式子用線連接起來:
1﹣ |
|
1﹣ | |
1﹣ | |
1﹣ |
(2)觀察上面計算結(jié)果相等的各式之間的關系,可歸納得出:1﹣=______
(3)利用上述規(guī)律計算下式的值:(1-)×(1-)×(1-)×…×(1-)×(1-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E為AB的中點,F(xiàn)為BC上任意一點,把△BEF沿直線EF翻折,點B的對應點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com