【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,動點P從點A出發(fā),以每秒1cm的速度沿線段AB向點B運動,連接DP,把∠A沿DP折疊,使點A落在點A′處.求出當△BPA′為直角三角形時,點P運動的時間.
【答案】答案見解析
【解析】整體分析:
因為不確定△BPA′的哪一個角是直角,所以需要分三種情況討論,即(1)當∠BA′P=90°時;(2)當∠A′PB=90°時;(3)當∠A′BP=90°時,注意畫出符合各種情況的圖形,找出折疊后相等的邊和角.
解:(1)當∠BA′P=90°時,由折疊得,∠PA′D=∠A=90°,
∴∠BA′D=∠BA′P+∠PA′D=180°,
∴點B、A′、D在一直線上,
Rt△ABD中,AD=6,AB=8,由勾股定理得BD=10.
設AP=xcm,
∴A′P=x,BP=8-x,A′B=10-6=4,
在Rt△A′PB中,x2+42=(8-x)2,
解得x=3.
∴點P運動的時間為3÷1=3秒.
(2)當∠A′PB=90°時,∠A′PA=90°,
∵∠DA′P=90°,∴四邊形APA′D是矩形,
∴A′P=AP,∴四邊形APA′D是正方形,∴AP=AD=6,
∴點P運動的時間為6÷1=6秒.
(3)當∠A′BP=90°時,不存在.
綜上所述,點P的運動時間為3s或6s.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將 繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃購買A、B兩種品牌的顯示器共120臺,A、B兩種品牌顯示器的單價分別為800元和1000元,設購買A品牌顯示器x臺,若學校購買這兩種品牌顯示器的總費用為110000元,那么A、B兩種品牌的顯示器各購買了多少臺?根據題目信息完成上面的表格,并列出方程,列出的方程: .
項目品牌 | 單價/元 | 購買數(shù)量/臺 | 購買費用/元 |
A | 800 | x |
|
B | 1000 |
|
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,2),連接AB,點P是x軸上的一個動點,連接AP、BP,當△ABP的周長最小時,對應的點P的坐標和△ABP的最小周長分別為( )
A. (1,0), B. (3,0), C. (2,0), D. (2,0),
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學活動課上,老師要求學生在5×5的正方形ABCD網格中(小正方形的邊長為1)畫直角三角形,要求三個頂點都在格點上,而且三邊與AB或AD都不平行.畫四種圖形,并直接寫出其周長(所畫圖象相似的只算一種).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛貨車和一輛小轎車同時從甲地出發(fā),貨車勻速行駛至乙地,小轎車中途停車休整2h后提速行駛至乙地.設行駛時間為x( h),貨車的路程為y1( km),小轎車的路程為y2( km ),圖中的線段OA與折線OBCD分別表示y1,y2與x之間的函數(shù)關系.
(1)甲乙兩地相距_____km,m=_____;
(2)求線段CD所在直線的函數(shù)表達式;
(3)小轎車停車休整后還要提速行駛多少小時,與貨車之間相距20km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數(shù)關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com