【題目】“雙十一”已經(jīng)成為中國電子商務(wù)行業(yè)的年度盛事,每年這一天成為全民的購物節(jié).在今年的“雙十 一”期間,某網(wǎng)店舉辦促銷活動(dòng),方案如下表所示:
一次性購物金額 | 促銷方案 |
低于 元 | 所購商品全部按九折結(jié)算 |
元到元(不包含600元) | 所購商品全部按八折結(jié)算 |
元或超過元 | 其中前元按八折結(jié)算,超過元的部分按七折結(jié)算 |
如果顧客在該網(wǎng)店一次性購物元(,求實(shí)際付款多少元?(用含 的代數(shù)式表示)
某顧客在該店兩次購物的商品共計(jì)元.若第一次購物商品的金額為 元(),求該顧客兩次購物的實(shí)際付款共多少元?(用含的代數(shù)式表示)
【答案】(1)當(dāng)一次性購物元,時(shí),實(shí)際付款:元;(2)本次實(shí)際付款
【解析】
因?yàn)轭櫩鸵淮涡再徫锍^600元,所以應(yīng)該按表格中的“其中前元按八折結(jié)算,超過元的部分按七折結(jié)算”促銷方案進(jìn)行付款,從而可得出答案;
分三種情況:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),分情況對(duì)應(yīng)表格中的促銷方案進(jìn)行計(jì)算即可.
當(dāng)時(shí),實(shí)際付款:元
答:當(dāng)一次性購物元,時(shí),實(shí)際付款:元
①當(dāng)時(shí),則,
購物實(shí)際付款:(元)
②當(dāng)時(shí),則,
購物實(shí)際付款:元,
③當(dāng)時(shí),則,
購物實(shí)際付款:元
故本次實(shí)際付款
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南市地鐵1號(hào)線,北起方特站,南至工研院站,共設(shè)11個(gè)車站,2019年4月1日正式開通運(yùn)營,標(biāo)志著濟(jì)南市正式邁進(jìn)“地鐵時(shí)代”.11個(gè)站點(diǎn)如圖所示:
某天,王紅從玉符河站開始乘坐地鐵,在地鐵各站點(diǎn)做志配者服務(wù),到A站下車時(shí),本次志照者服務(wù)活動(dòng)結(jié)束,約定向工研院站方向?yàn)檎,?dāng)天的乘車記錄如下(單位;站):+3、-2、-6、+7、-5、+3、+6.
(1)請(qǐng)通過計(jì)算說明A站是哪一站?
(2)若相鄰兩站之間的距離為3千米,求這次王紅志照服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點(diǎn)為A(-3,0),與y軸交點(diǎn)為B,且與正比例函數(shù)的圖象的交于點(diǎn)C(m,4).
(1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;
(2)若點(diǎn)P是y軸上一點(diǎn),且△BPC的面積為6,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016黑龍江省哈爾濱市)已知:△ABC內(nèi)接于⊙O,D是上一點(diǎn),OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時(shí),求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時(shí),連接AD、CD,AD與BC交于點(diǎn)P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點(diǎn),連接DE交BC于點(diǎn)Q、交AB于點(diǎn)N,連接OE,BF為⊙O的弦,BF⊥OE于點(diǎn)R交DE于點(diǎn)G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)如圖,點(diǎn)E、F為線段BD的兩個(gè)三等分點(diǎn),四邊形AECF是菱形.
(1)試判斷四邊形ABCD的形狀,并加以證明;
(2)若菱形AECF的周長為20,BD為24,試求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=BD.
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長交AD于F.
(1)求證:△AEF≌△BEC;
(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;
(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用如下方法測(cè)一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺(tái)上.向內(nèi)放入兩個(gè)半徑為5 cm的鋼球,測(cè)得上面一個(gè)鋼球的最高點(diǎn)到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com