【題目】如圖,直線 AB,CD 相交于點(diǎn)O,OE 平分∠AOD,OF⊥OC.
(1)圖中∠AOF 的余角是_____ _____(把符合條件的角都填出來(lái));
(2)如果∠AOC=120°,那么根據(jù)____ ______,可得∠BOD=__________°;
(3)如果∠1=32°,求∠2和∠3的度數(shù).
【答案】(1)∠AOD,∠BOC;(2)對(duì)頂角相等;120°;(3)∠2=64°,∠3=26°.
【解析】
(1)由垂線的定義和角的互余關(guān)系即可得出結(jié)果;
(2)由對(duì)頂角相等即可得出結(jié)果;
(3)由角平分線的定義求出∠AOD,由對(duì)頂角相等得出∠2的度數(shù),再由角的互余關(guān)系即可求出∠3的度數(shù).
(1)∵直線AB,CD相交于點(diǎn)O,
∴∠AOD=∠BOC
∵OF⊥OC
∴∠COF=90°
∴∠AOF+∠2=90°
∴∠AOF+∠AOD=90°
∠AOF的余角是∠2和∠AOD.即∠AOF的余角是∠BOC和∠AOD
(2)如果∠AOC=120°,那么根據(jù)對(duì)頂角相等可得∠BOD=120°
(3)∵OE平分∠AOD,∴∠AOD=2∠1=2×32°=64°
∴∠2=∠AOD=64°
∵∠COF=90°
∴∠3=90°-∠2=90°-64°=26°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(2,3),過(guò)點(diǎn)A的直線與y軸的負(fù)半軸相交于點(diǎn)C,且tan∠CAO= .
(1)求這條拋物線的表達(dá)式及對(duì)稱(chēng)軸;
(2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;
(3)若點(diǎn)D在x軸下方的對(duì)稱(chēng)軸上,當(dāng)S△DBC=S△ADC時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BE平分∠ABC交AC邊于點(diǎn)E,
(1)如圖1,過(guò)點(diǎn)E作DE∥BC交AB于點(diǎn)D,求證:△BDE為等腰三角形;
(2)如圖2,延長(zhǎng)BE到D,∠ADB =∠ABC, AF⊥BD于F,AD=2,BF=3,求DF的長(zhǎng)
(3)如圖3,若AB=AC,AF⊥BD,∠ACD=∠ABC,判斷BF、CD、DF的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,
求證:DECD=DFBE
(2)D為BC中點(diǎn)如圖2,
連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類(lèi),分別記為A,B,C:并且設(shè)置了相應(yīng)的垃圾箱,依次記為a,b,c.
(1)若將三類(lèi)垃圾隨機(jī)投入三個(gè)垃圾箱,請(qǐng)你用樹(shù)形圖的方法求垃圾投放正確的概率:
(2)為了調(diào)查小區(qū)垃圾分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類(lèi)垃圾箱中總重500kg生活垃圾,數(shù)據(jù)如下(單位:)
a | b | c | |
A | 40 | 15 | 10 |
B | 60 | 250 | 40 |
C | 15 | 15 | 55 |
試估計(jì)“廚余垃圾”投放正確的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知四邊形ABCD的四條邊相等,四個(gè)內(nèi)角都等于90°,點(diǎn)E是CD邊上一點(diǎn),F(xiàn)是BC邊上一點(diǎn),且∠EAF=45°.
(1)求證:BF+DE=EF;
(2)若AB=6,設(shè)BF=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;
(3)過(guò)點(diǎn)A作AH⊥FE于點(diǎn)H,如圖(2),當(dāng)FH=2,EH=1時(shí),求△AFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列美麗的圖案,是軸對(duì)稱(chēng)圖形但不是中心對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)我市開(kāi)展了“尋找雷鋒足跡”的活動(dòng),某中學(xué)為了了解七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事的情況,隨機(jī)調(diào)查了七年級(jí)50名學(xué)生在一個(gè)月內(nèi)做好事的次數(shù),并將所得數(shù)據(jù)繪制成統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題: ①所調(diào)查的七年級(jí)50名學(xué)生在這個(gè)月內(nèi)做好事次數(shù)的平均數(shù)是 , 眾數(shù)是 , 極差是 :
②根據(jù)樣本數(shù)據(jù),估計(jì)該校七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事不少于4次的人數(shù).
【答案】解:①平均數(shù);(2×5+3×6+4×13+5×16+6×10)÷50=4.4;
眾數(shù):5次;
極差:6﹣2=4;
②做好事不少于4次的人數(shù):800× =624;
(1)甲口袋有2個(gè)相同的小球,它們分別寫(xiě)有數(shù)字1和2;乙口袋中裝有3個(gè)相同的小球,它們分別寫(xiě)有數(shù)字3、4和5,從這兩個(gè)口袋中各隨機(jī)地取出1個(gè)小球. ①用“樹(shù)狀圖法”或“列表法”表示所有可能出現(xiàn)的結(jié)果;
②取出的兩個(gè)小球上所寫(xiě)數(shù)字之和是偶數(shù)的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com