【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC、BC為邊向外側(cè)作正方形ACDE和正方形BCFG.
(1)△ABC與△DCF面積的關系是;(請在橫線上填寫“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;
(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.
【答案】
(1)相等
(2)解:成立.理由如下:
延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.如圖所示:
∴∠APC=∠DQC=90°.
∵四邊形ACDE,BCFG均為正方形,
∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ.
在△APC和△DQC中, ,
△APC≌△DQC(AAS),
∴AP=DQ.
又∵S△ABC= BCAP,S△DFC= FCDQ,
∴S△ABC=S△DFC;
(3)解:圖中陰影部分的面積和有最大值,理由如下:
由(2)得:S△AEL=S△ABD,S△BFG=S△ABC,S△CIH=S△CBD,S△DLK=S△DAC,
∴陰影部分的面和S=S△AEL+S△BFG+S△CIH+S△DLK=2S四邊形ABCD,
設AC=x,則BD=10﹣x,
∵AC⊥BD,
∴S四邊形ABCD= AC×BD= x(10﹣x)=﹣ x2+5x=﹣ (x﹣5)2+ ,
∵﹣ <0,
∴S四邊形ABCD有最大值,最大值為 ,
∴圖中陰影部分的面積和有最大值為25.
【解析】解:(1)相等;理由如下:
∵四邊形ACDE和四邊形BCFG是正方形,
∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,
∴∠DCF=90°=∠ACB;
在△ABC與△DFC中, ,
∴△ABC≌△DFC(AAS).
∴△ABC與△DFC的面積相等;
所以答案是:相等;
【考點精析】本題主要考查了二次函數(shù)的最值的相關知識點,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4),
(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出點B1的坐標;
(2)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標系,使A點坐標為(﹣2,4),B點坐標為(﹣4,2);
(2)在第二象限內(nèi)的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標是 ;
(3)求△ABC中BC邊上的高長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上.
(1)如圖1,當折痕的另一端F在AB邊上且AE=4時,求AF的長
(2)如圖2,當折痕的另一端F在AD邊上且BG=10時,
①求證:EF=EG.②求AF的長.
(3)如圖3,當折痕的另一端F在AD邊上,B點的對應點E在長方形內(nèi)部,E到AD的距離為2cm,且BG=10時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將直角三角形 ABC 沿 AB 方向平移 AD 的長度得到三角形DEF,已知BE=5, EF=8, CG=2,則圖中陰影部分的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-3,1),B(-2,4).
(1)請你在方格中建立直角坐標系,并寫出C點的坐標;
(2)把△ABC向下平移1個單位長度,再向右平移2個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應點P1的坐標是 .
(3)在x軸上存在一點D,使△DB1C1的面積等于3,求滿足條件的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m處,過了2 s后,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數(shù)為時,四邊形ACFD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com