【題目】閱讀材料:善于思考的小軍在解方程組時,采用了一種整體代換的解法,

解:將方程②變形:4x+10y+y522x+5y+y5③,把方程①代入③得:2×3+y5y=﹣1,把y=﹣1代入①得x4,所以,方程組的解為

請你解決以下問題:

1)模仿小軍的整體代換法解方程組

2)已知x,y滿足方程組,求x2+4y2xy的值.

【答案】1;(215.

【解析】

1)由得出32x3y)﹣2y9③,把代入得出152y9,求出y,把y3代入求出x即可;

2)由求出x2+4y2,把代入求出xy2,得出x23xy+4y211,即可求出答案.

解:(1

由②得:32x3y)﹣2y9③,

把①代入③得:152y9

解得:y3,

y3代入①得:2x95,

解得:x7

所以原方程組的解為;

2

由①得:3x2+4y2)﹣2xy47

x2+4y2③,

把③代入②得:+xy36,

解得:xy2,

①﹣②得:x23xy+4y211

x2+4y211+3×217,

x2+4y2xy17215

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點PAB邊上一點(不與A,B重合),過點PPQCP,交AD邊于點Q,且,連結(jié)

1)求證:四邊形是矩形;

2)若CP=CD,AP=2,AD=6時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點ECD上,點FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠XOY=90°,點AB分別在射線OX、OY上移動,BE∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點AB移動發(fā)生變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上從左到右有A,BC三個點,點C對應(yīng)的數(shù)是10,ABBC20

1)點A對應(yīng)的數(shù)是   ,點B對應(yīng)的數(shù)是   

2)動點PA出發(fā),以每秒4個單位長度的速度向終點C移動,同時,動點Q從點B出發(fā),以每秒1個單位長度的速度向終點C移動,設(shè)移動時間為t秒.

①用含t的代數(shù)式表示點P對應(yīng)的數(shù)是   ,點Q對應(yīng)的數(shù)是   ;

②當(dāng)點P和點Q間的距離為8個單位長度時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,E、F分別是AD、BC的中點,CE、AF分別交BD于G、H兩點.

求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰△ABC中,AB=AC,∠BAC=30°,AB邊上的中垂線DE分別交AB,AC于點D、E,∠BAC的平分線交DE于點F.連接BF、CF、BE.

(1)求證:△BCF為等邊三角形;

(2)猜想EF、EB、EC三條線段的關(guān)系,并說明理由;

(3)如圖2,在BE的延長線上取一點M,連接AM,使AM=AB,連接MC并延長交AF的延長線于點M.求證:AN=MC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE⊥BF于點M,求證:AE=BF;
(2)如圖2,將 (1)中的正方形ABCD改為矩形ABCD,AB=2,BC=3,AE⊥BF于點M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDEC中,ABDE.若添加條件后使得ABC≌△DEC,則在下列條件中,不能添加的是(  )

A. BCEC,BE B. BCEC,ACDC

C. BEAD D. BCEC,AD

查看答案和解析>>

同步練習(xí)冊答案