精英家教網 > 初中數學 > 題目詳情

【題目】平行四邊形ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∴DF∥BE,

∵CF=AE,

∴DF=BE,

∴四邊形BFDE是平行四邊形,

∵DE⊥AB,

∴∠DEB=90°,

∴四邊形BFDE是平行四邊形


(2)解:∵AB∥CD,

∴∠BAF=∠AFD,

∵AF平分∠BAD,

∴∠DAF=∠AFD,

∴AD=DF,

在Rt△ADE中,∵AE=3,DE=4,

∴AD= =5,

∴矩形的面積為20


【解析】(1)根據有一個角是90度的平行四邊形是矩形即可判定.(2)首先證明AD=DF,求出AD即可解決問題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。

(1)試判斷B'E與DC的位置關系并說明理由。

(2)如果∠C=130°,求∠AEB的度數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列兩則材料:

材料一:我們可以將任意三位數記為(其中a,b,c分別表示該數百位數字、十位數字和個位數字,且a≠0),顯然=100a+10b+c.

材料二:若一個三位數的百位數字、十位數字和個位數字均不為0,則稱之為原始數,比如123就是一個原始數,將原始數的三個數位上的數字交換順序,可產生出5個原始數,比如由123可以產生出132,213,231,312,3215個原始數.將這6個數相加,得到的和1332稱為由原始數123生成的終止數.利用材料解決下列問題:

(1)分別求出由下列兩個原始數生成的終止數:243,537;

(2)若一個原始數的終止數是另一個原始數的終止數的3倍,分別求出所有滿足條件的這兩個原始數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校小組利用暑假中前40天參加社會實踐活動,參與了一家網上書店經營,了解到一種成本每本20元的書在x天銷售量P=50﹣x.在第x天的售價每本y元,y與x的關系如圖所示. 已知當社會實踐活動時間超過一半后.y=20+
(1)請求出當1≤x≤20時,y與x的函數關系式,并求出第12天此書的銷售單價;
(2)這40天中該網點銷售此書第幾天獲得的利潤最大?最大的利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在長方形ABCD中,AC是對角線將長方形ABCD繞點B順時針旋轉90°到長方形GBEF位置,HEG的中點AB=6,BC=8,則線段CH的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐標系平面上三點.
(1)把△ABC向右平移4個單位再向下平移1個單位,得到△A1B1C1 , 畫出平移后的圖形;
(2)若△ABC內部有一點P (a,b),則平移后它的對應點Pl的坐標為
(3)以原點O為位似中心,將△ABC縮小為原來的一半,得到△A2B2C2 , 請在所給的坐標系中作出所有滿足條件的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校小組利用暑假中前40天參加社會實踐活動,參與了一家網上書店經營,了解到一種成本每本20元的書在x天銷售量P=50﹣x.在第x天的售價每本y元,y與x的關系如圖所示. 已知當社會實踐活動時間超過一半后.y=20+
(1)請求出當1≤x≤20時,y與x的函數關系式,并求出第12天此書的銷售單價;
(2)這40天中該網點銷售此書第幾天獲得的利潤最大?最大的利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在邊長為1個單位長度的小正方形組成的網格中,給出了格點ABC(即三角形頂點是網格線的交點).

(1)請畫出ABC關于直線l對稱的A1B1C1;

(2)將線段BC向下平移2個單位,再向右平移3個單位,畫出平移得到的線段B2C2,并以它為一邊作一個格點A2B2C2,且使得A2B2C2是軸對稱圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關于原點對稱的ABC;

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

同步練習冊答案