【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交AB于E、交AC于D,連接BD.

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);
(2)若AB=AC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長.

【答案】
(1)解:∵∠ABC=∠C,∠A=40°,

∴∠ABC=(180°﹣40°)÷2=70°.

∵DE是邊AB的垂直平分線,

∴AD=DB,

∴∠ABD=∠A=40°,

∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°


(2)解:∵DE是邊AB的垂直平分線,

∴AD=DB,AE=BE,

∵△BCD的周長為18cm,

∴AC+BC=AD+DC+BC=DB+DC+BC=18cm.

∵△ABC的周長為30cm,

∴AB=30﹣(AC+BC)=30﹣18=12cm,

∴BE=12÷2=6cm


【解析】(1)首先計(jì)算出∠ABC的度數(shù),再根據(jù)線段垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等可得AD=BD,進(jìn)而可得∠ABD=∠A=40°,然后可得答案;(2)根據(jù)線段垂直平分線的性質(zhì)可得AD=DB,AE=BE,然后再計(jì)算出AC+BC的長,再利用△ABC的周長為30cm可得AB長,進(jìn)而可得答案.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角和線段垂直平分線的性質(zhì),需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF.

(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用的練習(xí)本可以到甲乙兩個(gè)商店購買,已知商店的標(biāo)價(jià)都是每本2元,甲店的優(yōu)惠條件是:購買10本以上,從第11本開始按標(biāo)價(jià)的70%出售,乙商店的優(yōu)惠條件是:從第一本起按標(biāo)價(jià)的80%出售. ①若小明要購買x本練習(xí)本,則小明到甲店購買,需付款元,當(dāng)?shù)揭业曩徺I時(shí),需付款元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.(a32=a6
B.a2a=a2
C.a+a=a2
D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】武漢市某氣象觀測點(diǎn)記錄了5天的平均氣溫(單位:)分別是25、20、1823、27,這組數(shù)據(jù)的中位數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級學(xué)生到野外活動,為測量一池塘兩端A,B的距離,甲、乙、丙三位同學(xué)分別設(shè)計(jì)出如下幾種方案:

甲:如圖①,先在平地取一個(gè)可直接到達(dá)A,B的點(diǎn)C,再連接AC,BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的長即為A,B的距離.
乙:如圖②,先過點(diǎn)B作AB的垂線BF,再在BF上取C,D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于點(diǎn)E,則測出DE的長即為A,B的距離.
丙:如圖③,過點(diǎn)B作BD⊥AB,再由點(diǎn)D觀測,在AB的延長線上取一點(diǎn)C,使∠BDC=∠BDA,這時(shí)只要測出BC的長即為A,B的距離.
(1)以上三位同學(xué)所設(shè)計(jì)的方案,可行的有
(2)請你選擇一可行的方案,說說它可行的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)如圖①,BF垂直CE于點(diǎn)F,交CD于點(diǎn)G,試說明AE=CG;

(2)如圖②,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點(diǎn)M,則圖中與BE相等的線段是 , 并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩圓的半徑分別為2和3,圓心距為7,則這兩個(gè)圓的位置關(guān)系為(
A.外離
B.外切
C.相交
D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,2),點(diǎn)B是x軸上的一個(gè)動點(diǎn),始終保持△ABC是等邊三角形(點(diǎn)A、B、C按逆時(shí)針排列),當(dāng)點(diǎn)B運(yùn)動到原點(diǎn)O處時(shí),則點(diǎn)C的坐標(biāo)是 . 隨著點(diǎn)B在x軸上移動,點(diǎn)C也隨之移動,則點(diǎn)C移動所得圖象的解析式是

查看答案和解析>>

同步練習(xí)冊答案