已知平面直角坐標(biāo)系中,有四個(gè)點(diǎn)A(-3,0)、B(0,-4)、C(3,0)、D(0,4)
(1)在下面的平面直角坐標(biāo)系中描出各點(diǎn),并順次連接,試判斷所得四邊形的形狀,并說(shuō)明理由;
(2)若以A、B、C、E四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)E的坐標(biāo).
分析:由題意直接作圖,我們可以證明四條線(xiàn)和坐標(biāo)軸所圍成的三角形全等,且都為斜邊,所以四條線(xiàn)圍成的圖形為菱形.根據(jù)平行四邊形的性質(zhì),我們可以證明點(diǎn)E即(1)中點(diǎn)D.
解答:解:(1)根據(jù)題意作圖得:

四邊形ABCD為菱形,
∵△OAB≌△OCB≌△OCD≌△OAD
∴AB=BC=CD=DA
∴四邊形ABCD為菱形.
(2)若ABCE為平行四邊形,即AE平行且等于BC,CE平行且等于AB,
可以看出點(diǎn)E即(1)中點(diǎn)D,
∴點(diǎn)E坐標(biāo)為(0,4).
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形的性質(zhì),做題時(shí)注意觀察思考,選擇好證明方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、已知平面直角坐標(biāo)系中兩點(diǎn)A(-1,O)、B(1,2).連接AB,平移線(xiàn)段AB得到線(xiàn)段A1B1,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(2,-1),則B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中三個(gè)頂點(diǎn)的坐標(biāo)為D(1,-4),E(1,2),F(xiàn)(3,0),那么,△DEF的面積為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系中三個(gè)點(diǎn)A(-8,0)、B(2,0)、C(
163
,0)
,精英家教網(wǎng)O為坐標(biāo)原點(diǎn).以AB為直徑的⊙M與y軸的負(fù)半軸交于點(diǎn)D.
(1)求直線(xiàn)CD的解析式;
(2)求證:直線(xiàn)CD是⊙M的切線(xiàn);
(3)過(guò)點(diǎn)A作AE⊥CD,垂足為E,且AE與⊙M相交于點(diǎn)F,求一個(gè)一元二次方程,使它的兩個(gè)根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、已知平面直角坐標(biāo)系中兩點(diǎn)A(-2,3),B(-3,1),連接AB,平移線(xiàn)段AB得到線(xiàn)段A1B1,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(3,4),則點(diǎn)B1的坐標(biāo)為
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)分別在x軸、y軸上,其中C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,-3).兩動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿線(xiàn)段AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位的速度沿折線(xiàn)CDA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)求菱形ABCD的高h(yuǎn)和面積s的值;
(2)當(dāng)Q在CD邊上運(yùn)動(dòng),x為何值時(shí)直線(xiàn)PQ將菱形ABCD的面積分成1:2兩部分;
(3)設(shè)四邊形APCQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(要寫(xiě)出x的取值范圍);在P、Q運(yùn)動(dòng)的整個(gè)過(guò)程中是否存在y的最大值?若存在,求出這個(gè)最大值,并指出此時(shí)P、Q的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案