如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=l,則OD=
4
4
,弦AB的長是
6
6
分析:直接根據(jù)OD=OC-CD即可求出OD的長;連接OA,根據(jù)垂徑定理得出AB=2AD,再根據(jù)勾股定理求出AD的長即可.
解答:解:∵⊙O的半徑為5,CD=l,
∴OD=OC-CD=5-1=4;
連接OA,
∵OC⊥AB于點D,
∴AB=2AD,
∵OA=5,OD=4,
∴AD=
OA2-OD2
=
52-42
=3,
∴AB=2AD=2×3=6.
故答案為:4,6.
點評:本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O的弦,∠AOB=100°,點C在⊙O上,且
AC
=
BC
,則∠CAB的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的弦,過點O作AB的平行線,交⊙O于點C,直線OC上一點D滿足∠D=∠ACB.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑等于4,tan∠ACB=
43
,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

54、如圖,AB為⊙O的弦,C、D為直線AB上兩點,要使OC=OD,則圖中的線段必滿足的條件是
AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•閔行區(qū)三模)已知:如圖,AB為⊙O的弦,OD⊥AB,垂足為點D,DO的延長線交⊙O于點C.過點C作CE⊥AO,分別與AB、AO的延長線相交于E、F兩點.CD=8,sin∠A=
35

求:(1)弦AB的長;
(2)△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB為⊙0的弦,⊙0的半徑為10,0C⊥AB于點D,交⊙0于點C,且CD=2,則弦AB的長是
12
12

查看答案和解析>>

同步練習冊答案