已知△ABCD的三邊長分別為,則此三角形是什么形狀的三角形?為什么?

解:△ABC為直角三角形。

∴△ABC為Rt△。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、已知矩形ABCD,AB=8,AD=9,工人師傅在鐵皮上剪去一個(gè)和三邊都相切的⊙P后,在剩余部分廢料上再剪去一個(gè)最大的⊙Q,那么⊙Q的直徑是
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,要建一個(gè)面積為40平方米的矩形花園ABCD,為了節(jié)約材料,花園的一邊AD靠著原有的一面墻,墻長為8米(AD<8),另三邊用柵欄圍成,已知柵欄總長為24米,求花園一邊AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請(qǐng)你寫出這種變換的過程
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請(qǐng)寫出求解過程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15
15
,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請(qǐng)利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

已知矩形紙片ABCD,AB=18cm,BC=25cm,和矩形ABCD的三邊相切,剪掉后,在余下的紙片部分再剪下一個(gè)最大的圓,則此半徑為

[  ]

A.4cm
B.3.5cm
C.7cm
D.6cm

查看答案和解析>>

同步練習(xí)冊(cè)答案