已知,如圖1,AB⊥BD于B,ED⊥BD于D,點C在直線BD上且與F重合,AB=FD,BC=DE
(1)請說明△ABC≌△FDE,并判斷AC是否垂直FE?
(2)若將△ABC 沿BD方向平移至如圖2的位置時,且其余條件不變,則AC是否垂直FE?請說明為什么?
精英家教網(wǎng)
分析:(1)根據(jù)全等三角形的判定SAS證△ABC≌△FDE,推出∠A=∠EFD,求出∠A+∠ACB=90°,推出∠ACE=90°即可;
(2)根據(jù)∠F=∠A,∠AMN=∠FNB,求出∠A+∠AMN=90°,根據(jù)三角形的內(nèi)角和定理和垂直定義即可推出答案.
解答:解:(1)AC⊥EF.
理由是:∵AB⊥BD于B,ED⊥BD,
∴∠B=∠D=90°,
在△ABC和△FDE中
AB=DF
∠B=∠
BC=DE
D

∴△ABC≌△FDE,
∴∠A=∠EFD,
∵∠B=90°,
∴∠A+∠ACB=90°,
∴∠ACB+∠ECD=90°,
∴∠ACE=180°-90°=90°,
∴AC⊥CE,
即AC⊥FE.

(2)AC垂直FE,
理由是∵∠A=∠F(已證),∠ABC=∠ABF=90°,∠AMN=∠FMB,
∴∠F+∠FMB=90°,
∴∠A+∠AMN=90°,
∴∠ANM=180°-90°=90°,
∴AC⊥FE.
點評:本題主要考查對全等三角形的性質(zhì)和判定,垂線,對頂角和鄰補(bǔ)角,三角形的內(nèi)角和定理等知識點的理解和掌握,推出∠A=∠F是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,DC∥AB,且DC=
12
AB,E為AB的中點.
(1)求證:△AED≌△EBC;
(2)觀察圖形,在不添加輔助線的情況下,除△EBC外,請再寫出兩個與△AED的面積相等的三角形(直接寫出結(jié)果,不要求證明):
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,CD∥AB,∠A=40°,∠B=60°,那么∠1=
80
度,∠2=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,線段AB=10cm,點C為線段AB上一點,BC=3cm,點D、點E分別為AC和AB的中點,則線段DE的長為
 
cm,請對你所得到的結(jié)論加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:如圖,CE⊥AB,DF⊥AB,AF=BE,CE=DF.
求證:(1)∠A=∠B;(2)AC∥DB.

查看答案和解析>>

同步練習(xí)冊答案