【題目】如圖,若正方形EFGH由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是( 。
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C
【答案】A
【解析】若以M為旋轉(zhuǎn)中心,把正方形ABCD順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)對(duì)應(yīng)點(diǎn)為H,B點(diǎn)對(duì)應(yīng)點(diǎn)為E,C點(diǎn)對(duì)應(yīng)點(diǎn)為F,D點(diǎn)對(duì)應(yīng)點(diǎn)為G,則可得到正方形EFGH;
若以O(shè)為旋轉(zhuǎn)中心,把正方形ABCD旋轉(zhuǎn)180°,A點(diǎn)對(duì)應(yīng)點(diǎn)為G,B點(diǎn)對(duì)應(yīng)點(diǎn)為H,C點(diǎn)對(duì)應(yīng)點(diǎn)為E,D點(diǎn)對(duì)應(yīng)點(diǎn)為F,則可得到正方形EFGH;
若以N為旋轉(zhuǎn)中心,把正方形ABCD逆時(shí)針旋轉(zhuǎn)90°,A點(diǎn)對(duì)應(yīng)點(diǎn)為F,B點(diǎn)對(duì)應(yīng)點(diǎn)為G,C點(diǎn)對(duì)應(yīng)點(diǎn)為H,D點(diǎn)對(duì)應(yīng)點(diǎn)為E,則可得到正方形EFGH.
故選A.
分類:若以M為旋轉(zhuǎn)中心,把正方形ABCD順時(shí)針旋轉(zhuǎn)90°;若以O(shè)為旋轉(zhuǎn)中心,把正方形ABCD旋轉(zhuǎn)180°;若以N為旋轉(zhuǎn)中心,把正方形ABCD逆時(shí)針旋轉(zhuǎn)90°,然后通過分別找出正方形EFGH與正方形ABCD的對(duì)應(yīng)點(diǎn)來判斷正方形EFGH是否由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)反比例函數(shù)C1:y=和C2:y=在第一象限內(nèi)的圖象如圖,P在C1上作PC、PD垂直于坐標(biāo)軸,垂線與C2交點(diǎn)為A、B,則下列結(jié)論,其中正確的是( )
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1- k2;③PA與PB始終相等;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)
A. ①② B. ②④ C. ①②④ D. ①③④
【答案】C
【解析】①∵A、B兩點(diǎn)都在y=上,∴△ODB與△OCA的面積都都等于,則①正確;②S矩形OCPB-S△AOC-S△DBO=|k2|-2×|k1|÷2=k2-k1,則②正確;③只有當(dāng)P的橫縱坐標(biāo)相等時(shí),PA=PB,錯(cuò)誤;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn),正確.故選C.
【題型】單選題
【結(jié)束】
10
【題目】如圖,反比例函數(shù)(k>0)與一次函數(shù)的圖象相交于兩點(diǎn)A(,),B(,),線段AB交y軸與C,當(dāng)|- |=2且AC = 2BC時(shí),k、b的值分別為( )
A. k=,b=2 B. k=,b=1 C. k=,b= D. k=,b=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形(長方形),點(diǎn)A、C的坐標(biāo)分別為A(10,0 ),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在線段BC邊上運(yùn)動(dòng),當(dāng)△ODP是腰長為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為 ____________________________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,O,B在同一直線上,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)寫出圖中所有互為余角的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點(diǎn).O是△ABC所在平面上的動(dòng)點(diǎn),連接OB、OC,點(diǎn)G、F分別是OB、OC的中點(diǎn),順次連接點(diǎn)D、G、F、E.
(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC.中,AB=BC,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于點(diǎn)D、F,下列結(jié)論:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正確的是(寫出正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(南陽唐河縣期中)如圖,在ABCD中,DE平分∠ADC交AB于G,交CB的延長線于E,BF平分∠ABC交AD的延長線于F.
(1)若AD=5,AB=8,求GB的長;
(2)求證:∠E=∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠ADC的平分線交AB于點(diǎn)E,∠ABC的平分線交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,過點(diǎn)A作⊙O的切線與直徑CD的延長線交于點(diǎn)E,已知AE=AC.
(1)求∠B的度數(shù);
(2)若ED=1,求AE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com