精英家教網 > 初中數學 > 題目詳情

已知一直線與拋物線y=-x2+1兩交點的縱坐標之積為0,且與另一條拋物線y=x2-2x+2兩交點的縱坐標之積為5,求滿足條件的直線的解析式.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

設拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實數.
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:
OA
OB
是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

設拋物線C的解析式為:y=x2-2kx+(數學公式+k)k,k為實數.
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:數學公式是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2003•長沙)設拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數.
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數學 來源:2003年湖南省長沙市中考數學試卷(解析版) 題型:解答題

(2003•長沙)設拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數.
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

同步練習冊答案