【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點O,A;將C1繞點A旋轉(zhuǎn)180°得到C2x軸于A1;將C2繞點A1旋轉(zhuǎn)180°得到C3 , x軸于點A2.....如此進(jìn)行下去,直至得到C2018 , 若點P(4035,m)在第2018段拋物線上,則m的值為________

【答案】-1

【解析】

每次變化時,開口方向變化但形狀不變,則 ,故開口向上時a=1,開口向下時a=-1;與x軸的交點在變化,可發(fā)現(xiàn)規(guī)律拋物線Cnx軸交點的規(guī)律是(2n-2,0)和(2n,0),由兩點式 求得解析式,把x=4035代入解析式,即可求得m的值.

由拋物線C1:y=-x(x-2),

y=0,∴-x(x-2)=0,解得

∴與x軸的交點為O(0,0),A(2,0).

拋物線C2的開口向上,且與x軸的交點為∴A(2,0)和A1(4,0),

則拋物線C2:y= (x-2)(x-4);

拋物線C3的開口向下,且與x軸的交點為∴A1(4,0)和A2(6,0),

則拋物線C3:y= -(x-4)(x-6);

拋物線C4的開口向上,且與x軸的交點為∴A2(6,0)和A3(8,0),

則拋物線C4:y=(x-6)(x-8);

同理:

拋物線C2018的開口向上,且與x軸的交點為∴A2016(4034,0)和A2017(4036,0),

則拋物線C2018:y=(x-4034)(x-4036);

當(dāng)x=4035時,y= 1×(-1)-1.

故答案為:-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,二次函數(shù)與一次函數(shù)的圖像可能是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)()的圖象如圖所示,下列結(jié)論:①;②;③為任意實數(shù),則;④;⑤,其中正確的有( )

A.①②③B.②④C.②⑤D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙OE,交AB于點D,連接AE,∠E30°AC5

1)求CE的長;

2)求SADCSACE的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市去年成功舉辦2018郴州國際休閑旅游文化節(jié),獲評“全國森林旅游示范市”.某市有A,BC,D,E五個景區(qū)很受游客喜愛.一旅行社對某小區(qū)居民在暑假期間去以上五個景區(qū)旅游(只選一個景區(qū))的意向做了一次隨機調(diào)查統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了如下兩幅不完整的統(tǒng)計圖:

1)該小區(qū)居民在這次隨機調(diào)查中被調(diào)查到的人數(shù)是   人,   ,并補全條形統(tǒng)計圖;

2)若該小區(qū)有居民1200人,試估計去B地旅游的居民約有多少人?

3)小軍同學(xué)已去過E地旅游,暑假期間計劃與父母從A,B,CD四個景區(qū)中,任選兩個去旅游,求選到AC兩個景區(qū)的概率.(要求畫樹狀圖或列表求概率)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過A-1,0)、B3,0)點,直線l是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)在直線l上確定一點P,使PAC的周長最小,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要設(shè)計一副寬20 cm、長30 cm的圖案,其中有一橫一豎的彩條,橫、豎彩條的寬度之比為23.如果要彩條所占面積是圖案面積的19%,問橫、豎彩條的寬度各為多少cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形中,厘米,厘米().動點同時從點出發(fā),分別沿,運動,速度是厘米/秒.過作直線垂直于,分別交,.當(dāng)點到達(dá)終點時,點也隨之停止運動.設(shè)運動時間為秒.

(1)若厘米,秒,求PM的長度;

(2)若厘米,求出某個時間,使⊿PNB∽⊿PAD,并求出它們的相似比;

(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°AB=5,AC=3,點P為邊AB上一動點(且點P不與點AB重合),PEBCEPFACF,點MEF中點,則PM的最小值為(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案