【題目】一輛貨車從貨場出發(fā),向東走2千米到達批發(fā)部,繼續(xù)向東走1.5千米到達商場,又向西走5.5千米到達超市,最后回到貨場.

1)以貨場為原點,以東為正方向,用一個單位長度表示1千米,你能在數(shù)軸上分別表示出貨場,批發(fā)部,商場,超市的位置嗎?

2)超市距離貨場多遠?

3)此貨車每千米耗油0.1升,每升汽油6.20元,請計算此貨車一共需要多少汽油費?

【答案】1)見解析;(2)超市距離貨場2千米;(3)一共需要6.82元.

【解析】

1)根據(jù)題意畫出數(shù)軸,如圖所示;

2)找出AD之間的距離即可;

3)根據(jù)題意列出算式,計算即可.

解:(1)根據(jù)題意畫出數(shù)軸,如圖所示:

2

==2

答;超市距離貨場的距離是2千米.

3(千米)

(元)

答:一共需要6.82元.

故答案為(1)見解析;(2)超市距離貨場2千米;(3)一共需要6.82元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小歡和小麗都十分喜歡唱歌.她們兩人一起參加學校的文藝匯演.在匯演前,主持人讓她們自己確定出場順序,可她們倆爭著先出場,最后主持人想出了一個主意,說:給你們五張卡片,每張卡片上都有一些數(shù).將化簡后的數(shù)在數(shù)軸上表示出來,再用連接起來,(連接化簡后的數(shù))誰先按照要求做對,誰先出場請你幫助她們解決這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC 中,∠ACB=90°,AC=BC,D AB 中點,DEDF.

1)圖中有 對全等三角形;

2)求證:ED=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長方形盒子的長、寬、高分別是4cm4cm,6cm

1)一只螞蟻想從盒底的點A沿盒的表面爬到盒頂?shù)狞cB,請你幫螞蟻設計一條最短的路線,螞蟻要爬行的最短路線是多少?

2)若將一根木棒放進盒子里并能蓋上蓋子,則能放入改盒子里的木棒的最大長是多少cm?(結果可保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.

1)請用配方法求二次函數(shù)圖象的最高點P的坐標;

2)小球的落點是A,求點A的坐標;

3)連接拋物線的最高點P與點O、A△POA,求△POA的面積;

4)在OA上方的拋物線上存在一點MMP不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:某社區(qū)超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價-進價)

1)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

2)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。

舉例:如圖1,若PA=PB,則點P為△ABC的準外心。

應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數(shù)。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并回答問題:

如果兩個兩位數(shù)的十位數(shù)字相同,個位數(shù)字相加為10,那么能立即說出這兩個兩位數(shù)的乘積,如果這兩個兩位數(shù)分別寫作(即十位數(shù)字為,個位數(shù)字分別為、),那么它們的乘積是一個4位數(shù),前兩位數(shù)字是的乘積,后兩位數(shù)字就是的乘積,如:,

1________;

2)設這兩個兩位數(shù)的十位數(shù)字為,個位數(shù)字分別為,,通過計算驗證這兩個兩位數(shù)的乘積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設,

①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關系?請說明理由;

②當點在直線BC上移動,則,之間有怎樣的數(shù)量關系?請直接寫出你的結論.

查看答案和解析>>

同步練習冊答案