【題目】一輛慢車(chē)和一輛快車(chē)沿相同路線從A地到B,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,下列說(shuō)法正確的有()個(gè)

快車(chē)追上慢車(chē)需6小時(shí)

慢車(chē)比快車(chē)早出發(fā)2小時(shí)

快車(chē)速度為46km/h

慢車(chē)速度為46km/h

AB兩地相距828km

快車(chē)14小時(shí)到達(dá)B

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

由圖可直接得到快車(chē)追上慢車(chē)的時(shí)間;

②由圖可直接得到慢車(chē)比快車(chē)早出發(fā)的時(shí)間;

③④從圖中得到行至276km時(shí)兩車(chē)所用時(shí)間,利用速度解答;

求出慢車(chē)行駛的函數(shù)解析式x=18代入解析式,求出y的值即為求A、B兩地之間的路程

快車(chē)從慢車(chē)出發(fā)后2小時(shí)出發(fā),6小時(shí)時(shí)相遇,用了6﹣2=4小時(shí)追上快車(chē),故①錯(cuò)誤;

②由圖象可知慢車(chē)比快車(chē)早出發(fā)2小時(shí),故②正確;

③快車(chē)速度69km/h,故③錯(cuò)誤;

慢車(chē)速度46km/h,故④正確

設(shè)慢車(chē)行駛的解析式為y=kx,將(6,276)代入解析式得:276=6k,解得k=46,解析式為y=46x,當(dāng)x=18時(shí),y=46×18=828(km).AB之間的距離為828km,故⑤正確

⑥由圖象可知快車(chē)到達(dá)B地所用時(shí)間=14-2=12(小時(shí))故⑥錯(cuò)誤

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月14日15日,“一帶一路”國(guó)際合作高峰壇在北京行,本屆壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷(xiāo)“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷(xiāo)售收入相同,3件甲種商品比2件乙種商品的銷(xiāo)售收入1500元.

(1)甲商品與乙種商品的銷(xiāo)售單價(jià)各多少元?

(2)若甲、乙兩種商品的銷(xiāo)售總收入不低于5400萬(wàn)元,則至少銷(xiāo)售甲種商品多少萬(wàn)件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩座建筑物ABCD,其中A,C距離為60米,在AB的頂點(diǎn)B處測(cè)得CD的頂部D的仰角β=30°,測(cè)得其底部C的俯角α=45°,求兩座建筑物ABCD的高度(保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,BC,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2=x0)交于點(diǎn)C,過(guò)點(diǎn)CCDx軸,且OA=AD,則以下結(jié)論錯(cuò)誤的是

A. 當(dāng)x0時(shí),y1x的增大而增大,y2x的增大而減;

B. k=4

C. 當(dāng)0x2時(shí),y1y2

D. 當(dāng)x=4時(shí),EF=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,晚上小亮在廣場(chǎng)上乘涼,圖中線段AB表示站在廣場(chǎng)上的小亮,線段PO表示直立在廣場(chǎng)上的燈桿,點(diǎn)P表示照明燈.

請(qǐng)你再圖中畫(huà)出小亮在照明燈P照射下的影子BC;

如果燈桿高PO=12m小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m請(qǐng)求出小亮影子的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,EAB延長(zhǎng)線上一點(diǎn),FDC延長(zhǎng)線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過(guò)點(diǎn)BFG的平行線,交DA的延長(zhǎng)線于點(diǎn)N,連接NG.

求證:BE=2CF

試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:設(shè)試驗(yàn)結(jié)果落在某個(gè)區(qū)域S中每一點(diǎn)的機(jī)會(huì)均等,用A表示事件試驗(yàn)結(jié)果落在S中的一個(gè)小區(qū)域M,那么事件A發(fā)生的概率PA.在桌面上放一張50 cm×50 cm的正方形白紙ABCD,O是它的內(nèi)切圓,小明隨機(jī)地將1000粒大米撒到該白紙上,其中落在圓內(nèi)的大米有800粒,由此可得圓周率的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案