【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x2與坐標(biāo)軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結(jié)論錯誤的是( )
A. 當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減。
B. k=4
C. 當(dāng)0<x<2時,y1<y2
D. 當(dāng)x=4時,EF=4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要購買一批籃球和足球,已知一個籃球比一個足球的進價高30元,買兩個籃球和三個足球一共需要510元.
(1)求籃球和足球的單價;
(2)根據(jù)實際需要,學(xué)校決定購買籃球和足球共100個,其中籃球購買的數(shù)量不少于足球數(shù)量的,學(xué)?捎糜谫徺I這批籃球和足球的資金最多為10500元.請問有幾種購買方案?
(3)若購買籃球x個,學(xué)校購買這批籃球和足球的總費用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為a,b,c,d,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為a×23+b×22+c×21+d×20,如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為0×23+1×22+0×21+1×20=5,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計劃每天生產(chǎn)輛自行車,但由于各種原因,實際每天生產(chǎn)量與計劃生產(chǎn)量相比有所差異,下表是該廠某一周的實際生產(chǎn)情況(以計劃產(chǎn)量為標(biāo)準(zhǔn),超產(chǎn)記為正數(shù),不足記為負數(shù).單位:輛):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與標(biāo)準(zhǔn)產(chǎn)量的差 |
()根據(jù)表格,這一周該廠實際生產(chǎn)自行車多少輛?
()若該廠實行“每日計件工資制”,每生產(chǎn)一輛自行車可得元,若超額完成任務(wù),則超出部分每輛額外獎勵元;若未完成任務(wù),則每少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少元?
()若將()中的“每日計件工資制”改為“每周計件工資制”,其他條件不變,在此方式下該廠工人一周的工資總額與“每日計件工資制”相比是減少還是增加了?減少或增加了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解九年級學(xué)生的身體素質(zhì)測試情況,隨機抽取了該市九年級部分學(xué)生的身體素質(zhì)測試成績作為樣本,按A(優(yōu)秀),B(良好),C(合格),D(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中“A”部分所對應(yīng)的圓心角的度數(shù).
(3)該市九年級共有8000名學(xué)生參加了身體素質(zhì)測試,估計測試成績在良好以上(含良好)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有()個
①快車追上慢車需6小時
②慢車比快車早出發(fā)2小時
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時到達B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線AC與BD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( )
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C(1,a),點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果過拋物線與y的交點作y軸的垂線與該拋物線有另一個交點,并且這兩點與該拋物線的頂點構(gòu)成正三角形,那么我們稱這個拋物線為正三角拋物線.
(1)拋物線 正三角拋物線;(填“是”或“不是”)
(2)如圖,已知二次函數(shù)(m > 0)的圖像是正三角拋物線,它與x軸交于A、B兩點(點A在點B的左側(cè)),點E在y軸上,當(dāng)∠AEB=2∠ABE時,求出點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com