解下列一元二次方程:
(1)用配方法x2-4x=1;
(2)2x2+
3
x-9=0
分析:(1)在方程兩邊同時加上4,左邊即可構(gòu)成完全平方公式的形式,再用配方法求解;
(2)直接用公式法求解.
解答:解:(1)∵x2-4x=1,
∴x2-4x+4=1+4,
即(x-2)2=5,
∴x-2=±
5
,
∴x1=2+
5
,x2=2-
5
;
(2)∵2x2+
3
x-9=0,
∴x=
-
3
±
(
3
)2-4×2×(-9)
2×2

∴x1=
3
,x2=-
3
3
2
點(diǎn)評:對不同形式的方程,可以靈活采用不同的方法求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠蹋?br />(1)5x(x-3)=6-2x;(2)3y2+1=2
3
y
;(3)(x-a)2=1-2a+a2(a是常數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列一元二次方程:
(1)x2=3x;
(2)(2x+1)(x-3)=-6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列一元二次方程
(1)x2+5x-6=0
(2)x2-2
5
x+2=0
(3)已知a、b、c均為實(shí)數(shù),且
a-2
+|b+1|+(c+3)2=0
,求方程ax2+bx+c=0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列一元二次方程
(1)4(x-1)2=9
(2)3x2+10x+3=0
(3)3x(x-1)=2x-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列一元二次方程:
(1)4x2-25=0;
(2)(x-2)2=3x(x-2);
(3)x2+3=4x;
(4)2(x2-3x)+1=0.

查看答案和解析>>

同步練習(xí)冊答案