【題目】如圖,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心為直角的扇形紙板的圓心放在O點處,并將紙板的圓心繞O旋轉,則正方形ABCD被紙板覆蓋部分的面積為( 。
A. a2 B. a2 C. a2 D. a
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,動點P從點A開始沿AD邊以每秒1㎝的速度向D點運動,動點Q從點C開始沿CB邊以每秒3㎝的速度向B運動,P,Q分別從A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t s.
(1)t為何值時,四邊形PQCD為平行四邊形?
(2)t為何值時,四邊形PQCD為等腰梯形?
(3)t為何值時,四邊形ABQP為矩形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.
(1)當D點在BC的什么位置時,DE=DF?請說明理由.
(2)DE,DF,CG的長之間存在著怎樣的等量關系?并說明理由.
(3)若D在底邊BC的延長線上,(2)中的結論還成立嗎?若不成立,又存在怎樣的關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準備用她們所學的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋铅翞?5°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋铅聻?0°.她們又測出A、B兩點的距離為30米.假設她們的
眼睛離頭頂都為10cm,則可計算出塔高約為(結果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( )
A.36.21米
B.37.71米
C.40.98米
D.42.48米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個根,則實數(shù)x1 , x2 , a,b的大小關系為( )
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉,當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關系是_________;
②設△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關系是____________.
(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應的BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB∥CD,AD與BC相交于點K,E是線段AD上一動點.
(1)若BK= KC,求 的值;
(2)連接BE,若BE平分∠ABC,則當AE= AD時,猜想線段AB、BC、CD三者之間有怎樣的等量關系?請寫出你的結論并予以證明.再探究:當AE= AD(n>2),而其余條件不變時,線段AB、BC、CD三者之間又有怎樣的等量關系?請直接寫出你的結論,不必證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com