【題目】如圖,以正方形ABCD的AB邊為直徑作半圓O,過點(diǎn)C作直線切半圓于點(diǎn)E,交AD邊于點(diǎn)F,則sin∠FCD=( 。
A. B. C. D.
【答案】B
【解析】
由四邊形ABCD為正方形,得到四個(gè)內(nèi)角為直角,四條邊相等,可得出AD與BC都與半圓相切,利用切線長(zhǎng)定理得到FA=FE,CB=CE,設(shè)正方形的邊長(zhǎng)為4a,FA=FE=x,由FE+FC表示出EC,由AD﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出關(guān)系式,用a表示出x,進(jìn)而用a表示出FD與FC,利用銳角三角函數(shù)定義即可求出sin∠FCD的值.
解:∵四邊形ABCD為正方形,
∴∠A=∠B=90°,AB=BC=CD=AD,
∴AD與BC都與半圓O相切,又CF與半圓相切,
∴AF=EF,CB=CE,
設(shè)AB=BC=CD=AD=4a,AF=EF=x,
∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,
在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,
∴(4a+x)2=(4a﹣x)2+(4a)2,
整理得:x=a,
∴FC=4a+x=5a,FD=4a﹣x=3a,
∴在Rt△DFC中,sin∠FCD=.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,中,,,,點(diǎn)是邊上任意一點(diǎn),則的最小值為__________.
()如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在、上,求的最小值.
()如圖③,矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接、,四邊形的面積是否存在最小值,若存在,求這個(gè)最小值及此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在趣味運(yùn)動(dòng)會(huì)“定點(diǎn)投籃”項(xiàng)目中,我校七年級(jí)八個(gè)班的投籃成績(jī)單位:個(gè)分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個(gè)、20個(gè) B. 22個(gè)、21個(gè) C. 20個(gè)、21個(gè) D. 20個(gè)、22個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為( 。
A. (2,2)B. (,)C. (2,)D. (,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)不透明的袋子中裝有7個(gè)只有顏色不同的球,其中2個(gè)白球,5個(gè)紅球.
(1)求從袋中隨機(jī)摸出一個(gè)球是紅球的概率.
(2)從袋中隨機(jī)摸出一個(gè)球,記錄顏色后放回,搖勻,再隨機(jī)摸出一個(gè)球,求兩次摸出的球恰好顏色不同的概率.
(3)若從袋中取出若干個(gè)紅球,換成相同數(shù)量的黃球.?dāng)嚢杈鶆蚝螅沟秒S機(jī)從袋中摸出兩個(gè)球,顏色是一白一黃的概率為,求袋中有幾個(gè)紅球被換成了黃球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在⊙O上,OC∥AD交⊙O于E, 點(diǎn)F在CD延長(zhǎng)線上, 且∠BOC+∠ADF=90°.
(1)求證:;
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F分別為BC,AB中點(diǎn),連接FC,AE,且AE與FC交于點(diǎn)G,AE的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)N.
(1)求證:△ABE≌△NCE;
(2)若AB=3n,FB=GE,試用含n的式子表示線段AN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊OA、OB分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2-7x+12=0的兩根(OA<OB),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2-4x+c(a≠0)與反比例函數(shù)y=的圖象相交于B點(diǎn),且B點(diǎn)的橫坐標(biāo)為3,拋物線與y軸交于點(diǎn)C(0,6),A是拋物線y=ax2-4x+c的頂點(diǎn),P點(diǎn)是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),P點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com