【題目】如圖,在中,,AB5,BC4,點D為邊AC上的動點,作菱形DEFG,使點E、F在邊AB上,點G在邊BC.若這樣的菱形能作出兩個,則AD的取值范圍是( )

A.B.

C.D.

【答案】B

【解析】

因為在中只能作出一個正方形,所以要作兩個菱形則AD必須小于此時的AD,也即這是AD的最大臨界值;當(dāng)AD等于菱形邊長時,這時恰好可以作兩個菱形,這是AD最小臨界值.然后分別在這2種情形下,利用相似三角形的性質(zhì)求出AD即可.

CDGM

由三角形的面積公式得

,解得

①當(dāng)菱形DEFG為正方形時,則只能作出一個菱形

設(shè):,

為菱形,

,,即,得

若要作兩個菱形,則

②當(dāng)時,則恰好作出兩個菱形

設(shè):

DH,

由①知,,,得

綜上,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聰明好學(xué)的亮亮看到一課外書上有個重要補(bǔ)充:

(角平分線定理)三角形一個內(nèi)角的平分線分對邊所成的兩條線段與這個角的兩鄰邊對應(yīng)成比例.于是他就和其他同學(xué)研究一番,寫出了已知、求證如下:

已知:如圖1,△ABC中,AD平分∠BACBC于點D,求證:

可是他們依然找不到證明的方法,于是,老師提示:過點BBEACAD延長線于點E,于是得到△BDE∽△CDA,從而打開思路.

)請你按老師的提示或你認(rèn)為其他可行的方法幫亮亮完成證明.

)利用角平分線定理解決如下問題:

如圖2,△ABC中,EBC中點,AD是∠BAC的平分線,EFADACF,AB7AC15,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點A-2,-5﹚,C5,n﹚,交y軸于點B,交x軸于點D

(1) 求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2) 連接OAOC.求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長線交邊AB于點M,過點BBNMPDC于點N.

(1)求證:AD2=DPPC;

(2)請判斷四邊形PMBN的形狀,并說明理由;

(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,ACBDCE均為等腰直角三角形,ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為 .

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題

如圖3,線段PA=3,B是線段PA外一點,PB=5,連接AB,AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點B的位置的變化,直接寫出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在邊CD(不與點CD重合),連接AE,BD交于點F.

1)若點ECD中點,AB2,求AF的長.

2)若AFB2,求的值.

3)若點G在線段BF上,且GF2BG,連接AG,CG,設(shè)x,四邊形AGCE的面積為,ABG的面積為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點三點,,

1)求拋物線的解析式和對稱軸;

2是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(biāo)(請在圖1中探索);

3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標(biāo),若不存在請說明理由.(請在圖2中探索)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax22x3ax軸交于A、B兩點,與y軸交于C點,OCOB,點P為拋物線上一動點

1)求拋物線的解析式;

2)當(dāng)點P運(yùn)動到拋物線對稱軸右側(cè)時如圖2,連PC、BC、BPBCP.設(shè)BCP的面積為s,點P的橫坐標(biāo)為x.若s,求x的取值范圍;

3)當(dāng)點P運(yùn)動到第四象限時,連AP、BP,BPy軸于點R,過B作直線lAPy軸于點Q,問:QROC之間是否存在確定的數(shù)量關(guān)系?若存在,請求出并證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案