【題目】如圖,在一筆直的沿湖道路上有A、B兩個游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.

(1)求觀光島嶼C與碼頭A之間的距離(即AC的長);

(2)游客小明準備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開往碼頭A、B的游船速度相同,設開往碼頭A、B所用的時間分別是t1、t2,求的值.(結果保留根號)

【答案】(1)(2+2)km;(2)

【解析】

(1)過點B作BDAC于點D,先解Rt△ABD,求出AD,再解Rt△ABD,求出CD,再根據(jù)AC=AD+CD求解即可;
(2)先解Rt△BCD,求出BC,再根據(jù)速度相同,時間與路程成正比即可求解.

(1)如圖,過點BBD⊥AC于點D.

根據(jù)題意得∠CAB=30°,∠ABC=105°,

∵BD⊥AC,

∴∠ADB=90°,

∴∠ABD=60°,

∴∠CBD=45°,

Rt△ABD中,∠CAB=30°,AB=4km,

∴BD=ABsin30°=2km,AD=ABcos30°=2km,

Rt△BCD中,∠CBD=45°,

∴CD=BDtan45°=2km,

AC=AD+CD=(2+2)km;

(2)在Rt△BCD中,∠CBD=45°,

∴BC=BD=2km,

∵速度相同,

===

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1,建立如圖所示的直角坐標系,已知兩點A0,2),B4,1

1)請在x軸上畫出一點P,使得PA+PB的值最。

2)請直接寫出:點P的坐標  ;PA+PB的最小值為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在ABC中,BO,CO分別平分∠ABC,ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=1,BEC=2,則以下結論①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正確的是( 。

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠A>B,分別以點A,C為圓心,大于AC長為半徑畫弧,兩弧交于點P,點Q,作直線PQAB于點D,再分別以點B,D為圓心,大于BD長為半徑畫弧,兩弧交于點M,點N,作直線MNBC于點E,若CDE是等邊三角形,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,甲車到達C地后因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關系如圖2,結合圖象信息解答下列問題:

(1)乙車的速度是   千米/時,乙車行駛的時間t=   小時;

(2)求甲車C地按原路原速返回A地的過程中,甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關系式;

(3)直接寫出甲車出發(fā)多長時間兩車相距80千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在四邊形ABCD是矩形,點E是AD的中點,求證:EB=EC.

(2)如圖,AB相切于C,,⊙O的半徑為6,AB=16,求OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線AB∥CD

1)如圖1,直接寫出∠ABE,∠CDE∠BED之間的數(shù)量關系是   

2)如圖2,BF,DF分別平分∠ABE,∠CDE,那么∠BFD∠BED有怎樣的數(shù)量關系?請說明理由.

3)如圖3,點E在直線BD的右側,BF,DF仍平分∠ABE,∠CDE,請直接寫出∠BFD∠BED的數(shù)量關系   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結論:①;;④當時, 的增大而增大.其中正確的結論有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案