【題目】如圖1,點、在的邊上,,,
(1)求證:
(2)如圖2,若,,,求線段的長
【答案】(1)見解析,(2).
【解析】
(1)作AF⊥BC于點F,利用等腰三角形三線合一的性質得到BF=CF,DF=EF,相減后即可得到正確的結論.
(2)根據題意得△ABC為等腰直角三角形,△ADE是等邊三角形,利用方程思想結合勾股定理可求出BF,DF的長,問題得解.
解:(1)如圖:過點A作AF⊥BC于F.
∵AB=AC,AD=AE.
∴BF=CF,DF=EF,
∴BD=CE.
(2)如圖:過點A作AF⊥BC于F.
∵∠BAC=90°,AB=AC,
∴△ABC為等腰直角三角形,AF⊥CB,
∴BF=AF,,
∵AB=2,
∴BF=AF=2,
∵AD=DE,∠DAE=60°,
∴△ADE是等邊三角形,
∴AD=2DF,
設AD=2x,則DF=x,
∵,
∴,
解得,
∴BD=BF-DF=2-=
科目:初中數學 來源: 題型:
【題目】榴蓮是熱帶著名水果之一,榴蓮營養(yǎng)極為豐富,含有蛋白質、糖類、多種維生素、膳食纖維、脂肪、葉酸,氨基酸和礦物質,有強身健體、滋陰補陽之功效.它的氣味濃烈、愛之者贊其香,厭之者怨其臭,喜歡榴蓮的人也喜歡榴蓮干,榴蓮千層,榴蓮披薩、榴蓮酥等榴蓮加工制品,某校數學興趣小組為了了解本校學生喜愛榴蓮的情況,隨機抽取了200名學進行問卷調查,經過統計后繪制了兩幅尚不完整的統計圖.(注:每一位同學在任何一種分類統計中只有一種選擇)
請根據統計圖完成下列問題:
(1)扇形統計圖中,“很喜歡”所對應的圓心角度數為______度;喜歡榴蓮千層的人數為______人;請補全條形統計圖.
(2)若該校學生人數為8000人,請根據上述調查結果,估計該校學生中最愛吃榴蓮干和榴蓮酥的人數之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,⊿ABC的頂點在格點上。 且A(1,-4),B(5,-4),C(4,-1)
【1】畫出⊿ABC;
【1】求出⊿ABC 的面積;
【1】若把⊿ABC向上平移2個單位長度,再向左平移4個單位長度得到⊿BC,在圖中畫出⊿BC,并寫出B的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)計算:(3﹣π)0+(﹣ )﹣2+ ﹣2|sin45°﹣1|;
(2)先化簡,再求值: ,其中實數m使關于x的一元二次方程x2﹣4x﹣m=0有兩個相等的實數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】依據下列解方程的過程,請在前面的括號內填寫變形步驟,在后面的括號內填寫變形依據。
解:原方程可變形為( )
( ),得( )
去括號,得
( ),得( )
合并同類項,得(合并同類項法則)
( ),得( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖一,點在線段上,圖中有三條線段、和,若其中一條線段的長度是另外一條線段長度的倍,則稱點是線段的“巧點”.
(1)填空:線段的中點 這條線段的巧點(填“是”或“不是”或“不確定是”)
(問題解決)
(2)如圖二,點和在數軸上表示的數分別是和,點是線段的巧點,求點在數軸上表示的數。
(應用拓展)
(3)在(2)的條件下,動點從點處,以每秒個單位的速度沿向點勻速運動,同時動點從點出發(fā),以每秒個單位的速度沿向點勻速運動,當其中一點到達中點時,兩個點運動同時停止,當
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為深化義務教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展、體育特長、藝術特長和時間活動四類選課意向”進行了抽樣調查(每人選報一類),繪制了如圖所示的兩幅統計圖(不完整),請根據圖中信息,解答下列問題.
(1)求扇形統計圖中的m的值,并補全條形統計圖;
(2)已知該校800名學生,計劃開設“實踐活動類”課程,每班安排20人,問學校開設多少個“實踐活動課”課程的班級比較合理.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com