【題目】如圖,在四邊形ABCD中,ACBD8,E、F、GH分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____

【答案】64

【解析】

連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質(zhì)、勾股定理計算即可.

解:連接HEEF、FGGH,

E、F分別是邊ABBC的中點,

EFAC4EFAC,

同理可得,HGAC4,HGACEHBD4,

HGEFHGEF,

∴四邊形HEFG為平行四邊形,

ACBD,

EHEF,

∴平行四邊形HEFG是菱形,

HFEG,HF2OH,EG2OE,

OE2+OH2EH216

EG2+FH2(2OE)2+(2OH)24(OE2+OH2)64,

故答案為:64

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點B的坐標(biāo)為(3,4),DOA的中點,點EAB上,當(dāng)△CDE的周長最小時,點E的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為保護生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網(wǎng)箱人數(shù)/

清理捕魚網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;

(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】M為二次函數(shù)y=﹣x2+2bx+1+4bb2圖象的頂點,直線ymx+5分別交x軸正半軸,y于點A,B

1)判斷頂點M是否恒在某條直線上?若是,求出該直線解析式;若不是,說明理由.

2)若二次函數(shù)圖象也經(jīng)過點A,B,且mx+5>﹣x2+2bx+2+4bb2,借助圖象,求出x的取值范圍.

3)點A坐標(biāo)為(50),點MAOB內(nèi)時,若點C,y1),D,y2)都在二次函數(shù)圖象上,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1ax+ba,b為常數(shù),且a0)與反比例函數(shù)y2m為常數(shù),且m0)的圖象交于點A(﹣4,2),B2,n).

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)連接OA,OB,求△AOB的面積.

3)直接寫出當(dāng)0y1y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,MOA的中點,弦CDAB于點M,過點DDECACA的延長線于點E

(1)連接AD,則∠OAD   °;

(2)求證:DE⊙O相切;

(3)F上,∠CDF45°,DFAB于點N.若DE3,求FN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC60°,∠C45°,點D,E分別為邊AB,AC上的點,且DEBC,BDDE2,CE,BC.動點P從點B出發(fā),以每秒1個單位長度的速度沿BDEC勻速運動,運動到點C時停止.過點PPQBC于點Q,設(shè)△BPQ的面積為S,點P的運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荊州古城是聞名遐邇的歷史文化名城,五一期間相關(guān)部門對到荊州觀光游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯誤的是( 。

A. 本次抽樣調(diào)查的樣本容量是5000

B. 扇形圖中的m10%

C. 樣本中選擇公共交通出行的有2500

D. 五一期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P(2,-2)在二次函數(shù)y=x2+mx+n(m0)的圖象上.

(1)m-n=3,求m、n的值.

(2)若該二次函數(shù)的圖象與y軸交于點A,其對稱軸與x軸交于點B,則OA=OB成立嗎?請說明理由.

(3)若該二次函數(shù)圖象向左平移k個單位,再向上平移4m個單位,所得函數(shù)圖象仍經(jīng)過點P,當(dāng)k≥-2時,求所得函數(shù)圖象的頂點縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案