【題目】已知如圖,在直角坐標(biāo)系xOy中,點A,點B坐標(biāo)分別為(﹣1,0),(0, ),連結(jié)AB,OD由△AOB繞O點順時針旋轉(zhuǎn)60°而得.
(1)求點C的坐標(biāo);
(2)△AOB繞點O順時針旋轉(zhuǎn)60°所掃過的面積;
(3)線段AB繞點O順時針旋轉(zhuǎn)60°所掃過的面積.
【答案】
(1)解:如圖1,過C作CE⊥OA于E,
∵點A,點B坐標(biāo)分別為(﹣1,0),(0, ),
∴OA=1,OB= ,
∵△AOB繞點O順時針旋轉(zhuǎn)60°得到△COD,
∴∠AOC=∠BOD=60°,AO=OC=1,
∴OE= OC= ,CE= OC= ,
∴C(﹣ , )
(2)解:△AOB繞點O順時針旋轉(zhuǎn)60°所掃過的面積= + + × = π+
(3)解:如圖2,
線段AB繞點O順時針旋轉(zhuǎn)60°所掃過的面積═( ﹣1× )+()+( ﹣ )= .
【解析】(1)根據(jù)題意可作輔助線,過C作CE⊥OA于E,由旋轉(zhuǎn)的性質(zhì)可得∠AOC=∠BOD=60°,AO=OC=1,再由直角三角形中,30度角所對的直角邊等于斜邊的一半可求得OE的長,在直角三角形CEO中,用銳角三角函數(shù)可求CE的長,根據(jù)點C在第二象限可寫出點C的坐標(biāo)。
(2)由題意結(jié)合圖形可得,△AOB繞點O順時針旋轉(zhuǎn)60°所掃過的面積=扇形AOC的面積+扇形BOD的面積+三角形BOC的面積。
(3)由題意結(jié)合圖形可得,線段AB繞點O順時針旋轉(zhuǎn)60°所掃過的面積═扇形AOC的面積-三角形AOC的面積+扇形BOD的面積-三角形DOM的面積+三角形BCM的面積。扇形面積=n360.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(k>0)與正比例函數(shù)y=ax相交于A(1,k),B(﹣k,﹣1)兩點.
(1)求反比例函數(shù)和正比例函數(shù)的解析式;
(2)將正比例函數(shù)y=ax的圖象平移,得到一次函數(shù)y=ax+b的圖象,與函數(shù)(k>0)的圖象交于C(x1 , y1),D(x2 , y2),且|x1﹣x2||y1﹣y2|=5,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為傳播“綠色出行,低碳生活”的理念,小賈同學(xué)的爸爸從家里出發(fā),騎自行車去圖書館看書,圖1表達(dá)的是小賈的爸爸行駛的路程(米)與行駛時間(分鐘)的變化關(guān)系
(1)求線段BC所表達(dá)的函數(shù)關(guān)系式;
(2)如果小賈與爸爸同時從家里出發(fā),小賈始終以速度120米/分鐘行駛,當(dāng)小賈與爸爸相距100米是,求小賈的行駛時間;
(3)如果小賈的行駛速度是米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組,有且僅有四個整數(shù)解,且使關(guān)于y的分式方程有非負(fù)數(shù)解,則所有滿足條件的整數(shù)a的值之和是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,
(1)寫出A、B、C的坐標(biāo).
(2)以原點O為中心,將△ABC圍繞原點O逆時針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1.
(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,點F是射線DC上一動點(不與C,D重合).連接AF并延長交直線BC于點E,交BD于H,連接CH,過點C作CG⊥HC交AE于點G.
(1)若點F在邊CD上,如圖1.
①證明:∠DAH=∠DCH;
②猜想:△GFC的形狀并說明理由.
(2)取DF中點M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點C作BD的平行線,過點D作AC的平行線,兩線交于點P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A= ÷(a﹣ ).
(1)化簡A;
(2)當(dāng)a=3時,記此時A的值為f(3);當(dāng)a=4時,記此時A的值為f(4);… 解關(guān)于x的不等式: ﹣ ≤f(3)+f(4)+…+f(11),并將解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),沿著箭頭方向,每次移動1個單位長度,依次得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),…,則點A2018的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com